
HUGHES

GROUND SYSTEMS GROUP

('NASA-C'-120204) DESIGN COF A FODULAI N74-20840
DIGITAL COLPU T ER SYSTEM DAL 4 AN] 5
Final and Phase 3 Report (Huqhes
Aircraft Cc.) *fre p HC $16.00 CSCL 09B Unclas

267 G3/08 16492

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

DESIGN OF A MODULAR DIGITAL COMPUTER SYSTEM
DRL 4 AND 5

FINAL AND PHASE III REPORT
CONTRACT NAS8-27926

DECEMBER 21,1973

-, .- - ~ji

WI W I

~U~t:Li~~5-A

7%%1~-7T

DESIGN OF A MODULAR DIGITAL COMPUTER SYSTEM

DRL 4 and 5

FINAL AND PHASE III REPORT

December 21, 1973

Prepared under Contract NAS8-27926

by

HUGHES AIRCRAFT COMPANY

FULLERTON, CALIFORNIA

for

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

FR 73-11-998

FOREWORD

This report documents the accomplishments of contract NAS8-27926,
whose scope is the design of an Automatically Reconfigurable Modular Multiproc-
essor System (ARMMS), with an emphasis placed on the work performed during
Phase III of this contract. The contract's time period was from October 8, 1971
to December 31, 1973 with work performed after March 1, 1973 falling under
Phase III. The design is being performed by the Data Processing Products
Division of Hughes-Fullerton. Hughes Space and Communication Group in El
Segundo, California provided support in the area of Aerospace Component and
Packaging Technology and M&S Computing, Inc. of Huntsville, Alabama is pro-
viding support in the area of executive software design under subcontract to
Hughes. The design is being directed by the Astrionics Laboratory of NASA's
Marshall Space Flight Center in Huntsville, Alabama. The contracting Officer's

Representatives are Dr. J.B. White and Mr. Sherman Jobe.

This report was edited and prepared by R.A. Easton. W. L. Martin
headed this project during Phases I and II, R.A. Easton during Phase III.
Major individual contributors to this report included R. A. Easton - ARMMS
Hardware design; W. L. Martin, W. G. Tees - early ARMMS Hardware trade-
offs; D.W. Kuyper - 10P design; S.A. Simpson, B. Cohen, R. Radys - Com-
ponent and packaging technology; J.H. Engleman, J. L. Bricker Reliability
Data Base and modeling, respectively; and T. T. Schansman, K. H. Schonrock,
C. E. Turner, D.J. Hyde - ARMMS Software.

ii

CONTENTS

SECTION 1- DESCRIPTION OF CONTRACTUAL WORK
REQUIREMENTS 1-1

SECTION 2 - SUMMARY OF ACCOMPLISHMENTS DURING THE
ARMMS PROGRAM 2-1

SECTION 3 - ARMMS CONTROL EXECUTIVE SOFTWARE 3-1

3.1 Control Executive System Design Objectives 3-3
3.2 Scope of the Control Executive System 3-4
3.3 Control Executive System Concepts 3-16
3.4 ACES Program Description 3-32
3.5 ACES Timing and Memory Utilization Estimates 3-81
3.6 Design Verification 3-85
3.7 Support Software 3-94

SECTION 4 - ARMMS HARDWARE DESIGN 4-1

4.1 Summary of ARMMS Hardware Design Prior to Phase III . . . 4-1
4.2 Memory Module Reliability and Register Level

Design Study 4-10
4.3 ARMMS BOSS Register Level Design and

Reliability Study 4-14
4.4 ARMMS CPE Register Level Design and Reliability Study ... 4-25
4.5 ARMMS IOP Register Level Design and Reliability Study ... 4-40
4.6 SUMC LSI Module Study 4-53
4. 7 A BOSS-less Version of the ARMMS Computer 4-65
4. 8 Requirements of the Automatically Reconfigurable

Modular System........................... 4-70

SECTION 5 - ARMMS COMPONENT AND PACKAGING
TECHNOLOGY STUDIES 5-1

SECTION 6 - ARMMS RELIABILITY STUDIES 6-1

6.1 Reliability Data Base 6-1
6.2 The Reliability Modeling of Coverage in ARMMS 6-3

iii/i

SECTION 1

DESCRIPTION OF CONTRACTUAL WORK REQUIREMENTS

The scope of the work requirements for contract NAS8-27926 as con-
tained in its Statement of Work are as follows:

The contractor, utilizing as much of the Spacecraft Ultrareliable Modular
Computer (SUMC) detailed logic as possible, shall design a modular digital com-
puter system for space flight applications. The design shall entail not only sys-
tem engineering for the total computer system, but shall also include detailed
design for the memory, system controller (BOSS), input/output unit, and error
detection, isolation, and switching mechanism necessary for the application of
redundancy. The computer system shall be capable of operating in three basic
modes.

1. Internally redundant mode to provide relatively low computational
capability but a very high reliability.

2. Parallel processing mode such that parallel CPE's can handle
different computational tasks. This provides a large amount of
computational capacity with a relatively low reliability requirement.

3. The system must be capable of operating when at least one module
of a kind (i. e., one of n modules in any or all redundant stages) is
functional.

The intent is to provide a system which can be used in a wide variety of
applications. First, the system must be capable of operating as an internally
redundant system for periods of time when real time recovery from failures is
required; e.g., in the launch phase of a vehicle. That is, failure must be de-
tected, isolated, and masked or corrected without resorting to special purpose
diagnostic software. The level of modularity and the degree or amount of re-
dundancy shall be dictated by the reliability specification herein. Second, the
system must be capable of operating as independent parallel modular processors
during periods of time when very high computational capabilities are required.
Thus, the tasks performed by each processor, although possibly dedicated, are
different. The approach may require the design of a so-called BOSS executive
controller module. An example of this application may be in a large space station
which requires a multitude of varied computational requirements. Third, the
system must be capable of operating as a simplex system when at least one mod-
ule of a kind is operational to provide a high probability, 0.99, of having at least
one operating processor at the end of a five-year mission. This allows not only
some computer capacity at the end of a long mission, but also provides for degra-
dation; i.e., some tradeoffs between computational capacity and reliability are
provided. e.g., a mission to the outer planets, such as the Grand Tour or plan-
etary softlandings. The basic objective is to provide a system with extremely
high reliability, very large computational capability, or a system where
these can be traded off. The last item is sometimes referred to as
"graceful degradation."

1-1

The Central Processor Element (CPE) shall be assumed to be based on

the MSFC SUMC design. The contractor shall examine this design and define

the modular partitioning required to meet the system requirement. The design
of the memory system, input/output, executive controller and failure detection,
isolation and switching logic shall be performed by the contractor and integrated

into the overall system. The input/output unit shall be a standard type with one

input and output channel interfacing directly to memory, i. e., the CPU is not to

be burdened with the total input/output problem. The input/output unit will inter-

face the computer system to a single device which for purposes herein will be

assumed to be a data bus system. It is to be assumed that the data bus system
can accommodate serial information at a peak bit rate of 10 MHz.

Special attention is to be given to partitioning the system in an optimum
manner so that parallel redundancy can be applied to each portion. In partition-

ing, basic consideration must be given to the number of interconnection between
units, reliability, etc. Parallel standby modules are to be assumed to be in a

powered-off mode. Particular attention must be given to solving the problems of
failure detection, failure isolation and module switching. Module switching is
necessary not only in switching out failed modules and switching in standby units,
but also in transferring from a parallel redundant mode to a simplex parallel

processing mode. The system must be capable of detecting intermittent as well

as solid failures in all three modes of operation. In the first mode of operation,
using modular redundancy, the error correction must be in real time. This in-
fers special purpose hardware for error detection and module switching. In the
second and third modes of operation, the time required for error correction must
be held to a minimum. Thus, in these modes, special purpose hardware or di-

agnostic software may be employed. The contractor shall perform system design
to the functional level. The contractor must show and demonstrate that he has
solved all problems associated with error detection and correction. In some
cases, detailed logic may be suitable whereas in others demonstrational models
or breadboards may be required.

The contractor shall design the executive software system insofar as it
is required to participate in the overall system design for accomplishing failure
detection and failure correction. The software design shall be detailed to the
level necessary to begin implementation. Flow charts must be provided as part
of the documentation for the software design. It shall be assumed that the tasks
to be performed by the system are typical guidance and navigation problems
during launch and interplanetary missions as well as providing data management.
The requirements for the executive software system, as well as the hardware
for the executive controller, in the areas of failure detection, failure correction,
system reconfiguration, and system verification are to be defined by the con-
tractor. Any special instructions required to aid in fault isolation must be iden-
tified. Design verification and support software plans for the above software
must also be developed.

The contractor shall develop all mathematical and computer models
necessary to carry out the research herein. A reliability model incorporating
consideration for failure detection and correction shall be developed and used
to determine if the requirements specified herein have been accomplished. The
relative complexity of the system when compared to a simplex system shall be
determined. Computing capacity, reliability and degradation shall be analyti-
cally defined such that tradeoffs can be made in these parameters.

1-2

The above scope of work shall be accomplished in three basic phases:
Phase I shall be the selection and definition of the configuration which satisfies
the requirements for the five-year mission. This shall include partitioning of
MSFC's CPE, preliminary design or selection and partitioning of a memory,
input/output unit, and executive controller. In other words, a simplex system
will have been defined, and a preliminary design at a functional level completed
and partitioned so that it can be made redundant. Phase II will entail incorporat-
ing redundancy into the design. Extensive consideration will be given to the prob-
lem of failure detection and correction both in determining what is required as
well as defining how it will be implemented. Detailed logic design of the decision
element is required and possibly breadboards to demonstrate feasibility. Re-
liability models incorporating the decision element will be developed and ana-
lyzed to determine if the desired goals are being achieved. The degree or amount
of redundancy to meet the requirements will also be determined. Phase III will
consist of the next level of design detail and a more detailed analysis of the sys-
tem. Detailed design to the logic level may be required in problem areas. Re-
partitioning of the system may be required to improve reliability or otherwise
enhance the design of the system. The mathematical or computational models
will be modified to take into consideration more design details.

Further definition of the BOSS and CPE modules during Phase III is of
primary importance in ARMMS. First, like the switching elements, their unique
characteristics cannot be directly extrapolated from earlier computer experience.
Second, they play as fundamental a role in achieving the reliability objectives as
do the switches. Specific features which shall be investigated further include but
are not necessarily limited to the following:

1. Redundancy incorporation to achieve the reliability objectives.

2. Detailed methods of controlling the switches.

3. Translation or tradeoffs of software requirement into hardware
requirement.

4. Identification of the role of BOSS in system synchronization.

5. Investigation of hardware means to improve overall system
efficiency.

6. Investigate commonality of BOSS elements with other processing
elements.

7. Generate BOSS system definition and specifications in relation to
the other elements in the system.

8. Perform evaluations of the applicability of ARMMS Fault Tolerance
Techniques to a SUMC processor using the existing LSI module set
and of these modules to the ARMMS CPE.

9. Perform a high reliability system design (exclusive of BOSS), in-
cluding the logic design of a "mini-BOSS" module that will serve as
the system's high reliability switching core.

10. Perform detailed logic design of BOSS and/or CPE error detection
and masking logic.

1-3

Consistent with the related results of the system design (number of inter-
module connections, gate count estimates, etc.) and the expected packaging en-
vironment, concepts for packaging and assembling ARMMS will be evolved. Each
mode of operation shall be investigated and a system efficiently adaptable to all
these modes shall be developed. Estimates of total power, weight, and volume
for the range of configurations shall be made assuming LSI implementation. The
estimates shall be based on one or more specific technologies. The impact of
minimum versus maximum power circuit technologies shall be described. Prob-
lems and risk areas, if any, shall be identified. Artistic drawings for one or
more concepts shall be delivered to MSFC. Power, weight and volume of the
total system shall be minimized for each type of mission. The range of environ-
mental constraints (temperature, vibration, vehicle form factors, etc.) encoun-
tered in boost, orbital, lunar, and interplanetary missions must be met.

1-4

SECTION 2

SUMMARY OF ACCOMPLISHMENTS DURING THE ARMMS PROGRAM

The primary objective of contract NAS8-27926 is to perform the system
design of an advanced modular computer system designated the Automatically
Reconfigurable Modular Multiprocessor System (ARMMS). The effort to be de-

scribed is fully compliant with the scope of work as given in the previous
section.

Any computer system justifies the cost of its development to the degree
that it provides new capabilities or allows earlier ones to be satisfied at re-

duced cost. ARMMS is primarily oriented toward providing the following new
capabilities for spaceborne computers for application in the 1975 to 1985 time
period:

1. To provide a modular computer system which is responsive to many
mission types and phases.

2. To achieve through modularity a higher computing capability than

previously available for spaceborne application.

3. To provide the capability to choose to maximize reliability through
the use of redundancy or to maximize processing capacity through
multiprocessing. Moreover, this multi-mode capability must be
dynamic; that is, a given system may alternate from one mode to
another as a function of real-time requirements.

4. To maximize reliability in all applications through the incorporation
of fault detection and recovery features and through the use of high
reliability components.

The first consideration of any ARMMS design tradeoff has been to avoid

compromising these basic objectives. However, an advanced paper design will
surely remain only that unless continuous concern is maintained for the practi-
cal requirements of implementation. Such design parameters as power density,
weight, volume, pin count, device count, etc., must influence the design proc-
ess. The design as presented here is oriented toward achieving the ARMMS
objectives within a practical hardware and software context.

ARMMS is an outgrowth and extension of two NASA development programs,
the MSFC Space Ultrareliable Modular Computer (SUMC) and the ERC Modular

Computer. The SUMC program has emphasized the development of a processor
which is effectively partitioned for LSI implementation. To date, a breadboard
TTL prototype has been constructed and a MOS LSI version is nearing comple-
tion. A modified version of SUMC is anticipated to be the processor module of
the ARMMS system. The breadboard of the ERC Modular Computer which has
undergone evaluation at MSFC had the common objective with ARMMS of achiev-

ing a variable configuration for varying levels of processing capacity and
reliability.

In addition, the experience of numerous NASA, Air Force, Army and
Navy architecture and design studies have been reviewed and incorporated into
the ARMMS design where appropriate. In general, these efforts have considered

2-1

a subset of the ARMMS objectives. For example, the JPL STAR is oriented
toward long-life reliability. The MSC reconfigurable guidance and control com-
puter study considers primarily space shuttle requirements. Other studies have
considered space station computer requirements. All have identified design
principles which form a substantial base of experience for the ARMMS
development.

The 27-month contract has been divided into three phases. The program
plan as performed during these Phases is shown in Figure 1. At the inception of
the contract, an initial baseline description was provided by MSFC. The pri-
mary effort in Phase I was to establish general design guidelines necessary to
achieve the ARMMS reliability and performance objectives; to survey published
estimates of performance requirements for future space computers, and to re-
fine the initial baseline. The efforts during Phase II were aimed at system and
interface design including definition of the overall system response to all
classes of failures.

Power supply and logic family tradeoff studies and preliminary studies
of memory and BOSS module register level design, BOSS/CPE commonality and
ARMMS Control Executive Software (ACES) were also completed. During
Phase III final versions of the register level designs for all ARMMS module
types were completed. In addition, applicability of the SUMC LSI module set to
ARMMS was evaluated, a feasibility study of a BOSS-less version of ARMMS was
performed and studies of ARMMS reliability modeling, ARMMS packaging, and
ARMMS support and control executive software including memory utilization
estimates and a design verification plan were completed. A summary of work
performed during phases I and II and a detailed description of Phase III work is
contained in the remaining sections of this report. The general subject of each
is listed below:

SECTION 3 - ARMMS SOFTWARE DESIGN

This section begins with a summary of ACES: ARMMS Control Executive
System covering software philosophy, task control, event recognition and re-
sponse, resource allocation and control, fault detection and diagnostic proc-
essing, information protection, and input/output control. The following topics
describe three additional software studies performed covering ACES timing and
memory utilization estimates, ARMMS support software requirements, and
an ACES Design Verification Plan. All software work on this contract was
performed by M&S Computing, Inc. under subcontract to Hughes.

SECTION 4 - ARMMS HARDWARE DESIGN

This section begins with a summary of hardware design tradeoffs and
guiding assumptions made prior to phase m effecting the final ARMMS design.
These include choice of operating modes, executive function location, module
partitioning, memory hierarchy, fault tolerance approach, and configuration
architecture. Register level designs and reliability analyses based upon these
designs are given for each ARMMS module in the next topics. The final three
topics cover tradeoffs requested by MSFC in order to bring ARMMS closer to
the requirements of present SUMC related programs and known near-term mis-
sions to which ARMMS is believed to be applicable. The first describes modi-
fications to SUMC to allow its use as an ARMMS CPE. The second describes a
BOSS-less version of ARMMS for missions not able to afford or justify a full
ARMMS system. The last summarizes the technical aspects of an ARMS

2-2

1971 1972 1973

ONDJ F MAMJ JASON D J FMAM J JASON D9

1. MISSION ANALYSIS PROFILE

2. RELIABILITY DATA BASE -
(PREL-IM

3. SYSTEM TRADEOFF STUDIES

4. SYSTEM INTERFACE AND
CONFIGURATION DESIGN

5. MEMORY DESIGN AND
RELIABILITY ANALYSIS

6. BOSS DESIGN AND RELIABILITY
ANALYSIS

7. CPE DESIGN AND RELIABILITY
ANALYSIS

I 8. PROCESSOR COMMONALITY STUDY
Co

9. SUMC LSI MODULE STUDY
(PRELIM

10. COMPONENT AND PACKAGING
TECHNOLOGY STUDIES

11. RELIABILITY MODELING STUDIES

12. IOP DESIGN AND RELIABILITY
ANALYSIS PRELIM)

(PRELIM)
13. ARMMS SOFTWARE DESIGN

14. BOSSLESS ARMMS DESIGN

15. ARMS BREADBOARD SPECIFICATION
(LEVEL OF EFFORT) ..

16. REPORTS (PHASE I) (PHASE II) (PHASE)III

Figure 1. ARMMS Design Plan

(ARMMS with no multiprocessing capabilities) breadboard based on ARMMS
principles modified as described in these previous two subsections. The bread-
board will be implemented at Hughes during 1974.

SECTION 5 - ARMMS COMPONENT AND PACKAGING TECHNOLOGY STUDIES

This section consists of two parts. The first summarizes the component
technology tradeoff studies performed during Phases I and II in the areas of data
bus technology, logic families, and power supply configurations. The second
gives the results of a study to define packaging concepts and physical hardware
parameters for each of the ARMMS module types and for a range of typical
ARMMS configurations. Areas investigated included LSI chip and discrete com-
ponent packaging methods, printed circuit board and chassis design, module
interconnection techniques, and thermal and stress analysis of the design chosen.

SECTION 6 - ARMMS RELIABILITY STUDIES

The first part of this section summarizes the reliability data base study
performed during phase I which yielded the failure rate numbers used in the
module reliability analyses discussed in section 4 of this report. Equations for
hand calculating ARMMS reliability using the numbers from section 4 are also
given. The final topic surveys reliability studies performed elsewhere, assess-
ing their degree of applicability to ARMMS, and then describes a new model de-
veloped specifically for ARMMS.

2-4

SECTION 3

ARMMS CONTROL EXECUTIVE SOFTWARE

This section discusses ACES: ARMMS Control Executive System, the
software design effort which was performed in close coordination with the ARMMS
hardware design to insure a soundly integrated design of the system. First the

objectives and scope of ACES are outlined. Subsequently the Control Executive
Concepts, from a users viewpoint, and detailed design information are presented.
Software philosophy, job and task control, event processing and recognition,
resource allocation and control, fault detection and diagnostic processing, in-
formation protection, and input/output control concepts are covered.

To insure that all major software problemns had been considered, three
special studies were performed: ACES timing and memory utilization estimates
were made, potential ACES Design verification methods were reviewed and re-
commendations made, and ARMMS support software requirements were inves-
tigated in detail. Recommendations were made concerning the types of support
software required and potential use of existing packages. The results of these
last three efforts are summarized at the end of this section. All software work
on this contract was performed by M&S Computing, Inc. under subcontract
to Hughes.

ABBREVIATIONS

ABEND - Abnormal Ending or Termination
ACES - ARMMS Control Executive System
AFI - Alert File Item
AFM - Alert File Memory

ARMMS - Automatically Reconfigurable Modular Multiprocessing System

AVAIL - Available Resource Word

BOSS - Block Organizer and System Scheduler
BSW - Bus Status Word

CPE - Central Processing Element

CSRW - Configuration Stream Request Word

DIO - Direct Input/Output

DP - Diagnostic Processor

FBSM - File Block Status Matrix

FD - Fault Detector

FM - File Memory

FPS - Full Processing Stream

I/O- Input/Output
IOP - Input/Output Processor

IOPS - I/O Processing Stream

IP - Input to (CPE) Processor (Bus)

JAL - Job Active List

JDF - Job Definition File
JIB - Job Information Block

LA - Logical Address

LAAT - Logical Address Assignment Table
LM - Logical Module

LP - Logical Page
LPS - Limited Processing Stream

LSI - Large Scale Integration

LU - Logical Unit

MAXWATE - Maximum Available Stream Weight
MET - Master Execution Table

MFW - Module Fail Word

MI - Memory Input (Bus)

MIC - Memory Input (Bus from) CPE

3-1

ABBREVIATIONS
(continued)

MINPRI - Minimum Priority Needed to Pre-empt
MIP - Memory Input (Bus from) IOP
MO - Memory Output (Bus)
MOC - Memory Output (Bus to) CPE
MOP - Memory Output (Bus to) IOP
MSW - Module Status Word

OB - Output Bus (IOP to VS)

PEQP - Priority Execution Queue Pointer
PLIST - Priority Execution List
PO - (CPE) Processor Output (Bus)
PSW - Program Status Word

Q - Queue (Timer Queue or Priority Queue)

RERQ - Resource Requirements Table
RPC - Resource Pool Counters

TD - Task Dictionary
TDIB - Task Dictionary Information Block
TDIF - TMR Dispatcher Inhibit Flag
TMR - Triple Modular Redundancy
TQI - Task Queue Item
TQM - Task Queue Memory
TTE - Time to Execute

UST - Unit Status Table

VS - Voter Switch

WF - Weighting Factor
WFM - Wait File Memory
WFP - Wait File Pointer
WI - Wait Item
WIQ - Wait Item Queue

3-2

3. ARMMS CONTROL EXECUTIVE SYSTEM (ACES)

This section describes the software design effort performed in support

of ARMMS. The effort was performed in close coordination with the ARMMS

hardware design to insure a soundly integrated design of the system.

The major part of the effort was directed towards the development

of the Control Executive. This section, therefore, first describes the ob-

jectives and scope of the system. Subsequently the Control Executive

Concepts, from a users viewpoint, and detailed design information are pre-

sented.

To insure that all major software problems had been considered, two

special studies were performed. Potential methods for design verification

were reviewed and recommendations made.

Support software required for ARMMS application and Control Executive

implementation was investigated in detail. Recommendations were made

concerning the type of software packages required and potential use of existing

packages. The results of these last two efforts are summarized at the end

of this section.

3. 1 Control Executive System Design Objectives

A primary objective of ARMMS is to provide the ability to support

a long life mission with a high probability of success. ARMMS can therefore,
for example, be configured as a TMR System with standby spares for each

module.

ACES,' therefore, must first of all be able to react to error indications

from the hardware, isolate a failing module, switch in a spare module, and

allow the system to continue successfully. This has to be accomplished with-

out any human assistance. ACES must further be able to allow the systems to

degrade gracefully until the point that all of a particular type of module have

failed. In addition, ACES must provide the application designers with as

many aids as possible to prevent the propagation of software errors. That is,
the effect of undetected software bugs must be contained within the software

module containing the error. This may allow the system, in most instances,
to continue its most critical functions regardless of software failures.

ARMMS can be selected to be configured as a high-performance

system consisting of modules identical to those used in the high reliability

mode described above. To accomplish this the system can be configured into

a multiprocessing system.

3-3

ACES must therefore be able to schedule execution of programs on
a varying number of independently operating modules. It must allow an
application to be designed such that it can be divided in concurrently exe-
cuting modules. It must not, however, force an application into a special
design when multiprocessing is not necessary. Program modules, executing
concurrently, must, of course, be prevented from interfering with each
other's operation.

The primary types of applications, which ARMMS is anticipated to
support, are real-time applications such as vehicle control, experiment
control, etc. ACES is, therefore, primarily designed to support "process-
control" type applications. This does not imply that "batch-processing"
will not or cannot be performed. It implies that many support services
characteristic of "batch-processing" (such as File Management) are not
a standard service within ACES, but many "real-time control" services
are. It is anticipated that, where batch-processing is required, that
particular job and its support service routines are run as a single task under
control of ACES. Batch-processing is thus considered incidental to the
ACES design.

Finally, it is necessary to keep the ACES system as small and
simple as possible. ACES directly influences BOSS and its interfaces
with the ARVMMS modules. The complexity of BOSS and its interfaces
directly affect the overall reliability and cost of the system. In addition,
the Control Executive itself must not fail, (nearly) exhaustively. The
ACES design must, therefore, lend itself to a true modular design; that is,
a design with simple interfaces between modules, resulting in a finite
number of combinations of inputs and outputs for each module.

3. 2 Scope of the Control Executive System

Any software development effort needs to have boundaries established
to insure that it fulfills its intended purpose and does not include functions
that were not intended to be provided.

The following describes, in outline form, the scope under which
the ARMMS Control Executive System (ACES) was developed.

3-4

Job Management

A. Job Control

The system provides support for the concurrent execution

of multiple jobs.

The system allows jobs to be scheduled by other jobs based

on real time/time intervals or remote requests.

1. Job Scheduling

a. Job Scheduling Algorithm

Scheduled jobs are selected for activation based

on job priority and memory resources available.

They are not deactivated until normal or abnorm-

al termination.

b. Job Scheduling Initiation

All job scheduling requests are initiated by tasks

(application or system).

c. Job Scheduling Queue Maintenance

The system maintains a job input queue, with

a maximum of sixteen (16) entries.

2. Job Resource Allocation

a. Job Core Storage Allocation

Static core storage allocation is provided at

the partition level.

Core storage remains allocated until job

completion.

The system provides static core allocation for

areas common to jobs.

3-5

b. Common Routine Allocation

The system supports the inclusion of serially
reusable and re-entrant common subroutines.

The system allows user provided routines to
be shared among jobs under protection of the
executive.

3. Job Loading

The system provides for job loading into main memory
from components available in the system library.

Jobs are loaded in an absolute format; unresolved link-

ages can be resolved at load time.

The system supports a simple job-step structure.

4. Job Termination Processing

The system deallocates all resources at job termina-
tion.

The system provides the option to execute a prespecified
job at task abnormal termination.

B. Task Control

The system supports the specification and execution, and
coordination of asynchronous execution of tasks on multiple
processing streams within a job.

1. Task Scheduling

a. Time Initiated Scheduling

The system permits a task to be scheduled at a
specified absolute time.

The system permits a task to be scheduled after
a specified time interval.

3-6

The system permits a task to be scheduled

periodically at each elapsement of a specified

time interval.

b. Event Initiated Scheduling

The system provides scheduling which is con-

ditional upon recognition of the following events

or combinations thereof:

(1) External attention requests

(2) Error conditions

(3) I/O completion

(4) Task completion (normal/abnormal)

(5) Intertask program flags

c. Task Initiated Scheduling

The system provides for task initiated scheduling
of:

(1). Job s

(2) Job phases within the same job

(3) Tasks within the same job

The system provides scheduling for "immediate"
execution of other tasks or common subroutines.

The system provides scheduling for asynchronous
execution.

The system provides scheduling for subsequent
execution.

d. Task Scheduling Queue Maintenance

The system allows a large number of tasks
(: 100) to be scheduled.

3-7

e. Event Synchronization

The system supports a suspension of task
execution until recognition of the following
events or combinations thereof:

(1) Specified absolute time

(2) Elapsed time interval

(3) External attention request

(4) Error conditions

(5) I/O completions

(6) Task completions (normal/abnormal)

(7) Intertask program flags

Resource Allocation

a. Core Storage Allocation

The system provides dynamic core allocation for:

(1) I/O buffers

(2) Work storage

The system provides dynamic read and/or write
protection on any area used by a task.

b. I/O Device Allocation

The system permits device specification at the
generic device level.

c. Common Routine Allocation

The system supports the use of routines common
to tasks within a job of the following types:

(1) Serially reusable

(2) Re -entrant

3-8

The common routines are explicitly identified

and may reside in the problem program area.

d. Processor Stream Allocation

The system supports the allocation of processing
streams on a task level in accordance with pre-

defined parameters specified for each task.

Processing streams are deallocated on any type

of task completion

3. Dispatching Control

The system supports dispatching based on preassigned

task dispatching priorities and availability of allocatable
resources.

The system supports dynamic dispatching to any com-
bination of resources forming a valid processing stream.

4. Task Termination

The system deallocates all task resources upon abnor-

mal task termination.

The system allows a specified task to be executed upon
abnormal terminations.

C. I/O Control Interface

The system is able to interface with a variety of I/O processors

(and consequently devices) subject to standard interface require-
ments.

The system is able to support "asynchronous" I/O (task exe-

cution does not halt) as well as "synchronous" I/O (task exe-

cution suspended until I/O operation complete).

1. I/O Scheduling

The system provides the capability for a task to request

execution of an I/O request without suspending execution

of the task.

3-9

The system provides a means whereby a task can
monitor an I/O request's completion without sus-
pending the task's execution.

Specific device assignment is the responsibility of the
system.

The system permits the specification of I/O request
priorities.

The system provides facilities for alternate I/O (bus
or device) routing.

2. Data Transfer

The system provides buffer control.

The system is able to interface with a basic file
manager.

a. Buffering Control

The system provides for simple buffering of
data.

The system provides dynamic buffering of data.

D. System Communication Interface

The system allows for a command interface to override or
invoke its functions concerned with automatic mission sched-
uling, and reconfiguration.

The system allows for an interface with a possible test
(hardware or debug (software) console or loading mechanism.

1. Resource Status Modification

The system allows modification of resource status from
an on-line console or command processor (remote
control).

2. System Status Interrogation

The status of the system is available through any of the
communication interfaces.

3-10

The system provides facilities to display the following:

(1) Resource status

(2) Task status

(3) Task information

(4) Queue status

3-11

*I. Diagnostic Error Processing

The system insures that the effect of errors caused by execution
of a task is limited to that task. That is, neither the Control Executive
nor other tasks should be affected by the failures in a task.

A. Hardware Error Control

1. Error Correction

The system fully utilizes the reconfiguration capabilities
provided in ARMMS to replace failed (or potentially
failed) modules with operational (fully or partially)
modules.

The system provides control linkage to user (task)
abort routines upon detection of conditions that pro-
hibit successful task completion.

The system diagnoses equipment malfunctions at least
to a module level.

2. Error Notification

The system logs out errors and takes appropriate actions
upon detection of errors.

3. Error Recovery

The system permits on-line system maintenance of devices.

The system allows commanded reconfiguration through
any of its system communication channels.

B. Software Error Control

1. Error Correction

The system provides controlled linkage to user error
abort routines upon detection of software errors (or
potential software errors).

The system provides a default action if no user routines
are provided.

3-12

The system is able to detect that hardware errors

are causing errors that seem to be software errors.

2. Error Notification

The system denotes the fact that a task has been

aborted.

C. Interface Error Control

The system dynamically validates all external or internal

linkages to the fullest extent possible.

3-13

III. Processing Support

A. Timing Service

1. Real Time Clock Service

The system provides the current real time in hours/
minutes/ seconds.

The system provides facilities for task suspension
until a specified time.

2. Interval Timer Service

The system provides one interval timer.

The system permits time intervals to be measured in
terms of actual elapsed time.

The system permits task suspension for a specified
time interval.

The timer base is fixed.

B. System Test Mode Services

The system provides I/O facilities to reroute I/O requests.

The system allows the user to override abnormal abort
services.

The system allows for the insertion of breakpoints in programs.

The system allows the user to start or restart a program at a
specified address.

The system permits memory searching/display.

The system permits memory modification.

C. Maintaining Error Statistics

The system accumulates information for a hardware error
summary.

3-14

The system accumulates information for a software error

summary.

The system provides facilities for the analysis of error

statistics.

D. Event Monitoring

The system monitors external signals (discretes, interrupts)
as well as internal signals (program flags) or requests from

the tasks.

The tasks are able to control their execution based upon the

status of these events.

The tasks are able to base their decision upon the status

of such events.

E. Common Data Access and Protection

The system provides a common data area accessible to all

jobs in the system.

The system provides Read or Write locks on groups of

variables in any common area on request of a task.

The system prevents deadlocks due to access to common

variables.

3-15

3. 3 Control Executive System Concepts

This section presents the ARMMS Control Executive System as it
would be employed by a user. While any system can be technically involved
and logically sound within itself, the true test of a "good" operating system
lies in its ability to perform many meaningful and beneficial functions for
its user(s).

ACES makes available a comprehensive set of over 20 request
services to the user. In addition, many useful techniques from larger
scale operating systems have been incorporated into ACES design. Such
techniques include multitasking, multijobbing, dynamic working storage
allocation, etc. Table 3-1 lists the request services provided by ACES
to the user.

The following paragraphs summarize the major capabilities provided
for the user by ACES. All capabilities and services presented are explained
as they would be utilized by the ACES user.

3. 3. 1 Job Control

In the ARMMS system, a job is the highest user entity processed by
ACES. A job is composed of one or more tasks which perform different,
but related functions. For instance, in the space environment, for which
ARMMS is designed, one job might be for vehicle control, one for a life
support system, while another would be for performing experiments. The
vehicle control job might contain such tasks as navigation, guidance, minor
loop, minor loop support, and switch selector processing. ACES supports
a maximum of four jobs in execution simultaneously.

In many cases, all tasks of a job are not necessarily required to be
in main memory simultaneously. A particular sequence of events may require
one set of tasks to execute, while another sequence may require another
set of tasks to execute. Thus, a provision has been made in ACES to allow
the user to perform a simple overlay structure thereby conserving memory
requirements. The overlay structure must be predefined at linkage edit
time. Each group of tasks which constitutes one overlay segment is called a
Job Phase. A Job Phase is composed of one or more tasks and is resident
on bulk storage until needed. Figure 3-1 is a diagram of the overall concept
of Jobs, Job Phases, and Tasks.

The main segment is loaded when a job is initiated. A task in the
main segment must be predesignated to be scheduled immediately by ACES
upon job initiation. It is this initial task's responsibility to begin the job's
task scheduling mechanisms and to request the initial Job Phase to be loaded.

3-16

TABLE 3-1 ACES REQUEST SERVICES

Job Schedule Open File

Job Terminate Close File

Job Cancel Buffered I/O

Job Phase Load Direct I/O

Task Schedule Get Main Memory

Task Terminate Free Main Memory

Abnormal Termination (ABEND) Boundary Mover

Task Cancel Lock Variable

Task Status Unlock Variable

Wait Call System Subroutine Call

Alert Call System Subroutine Complete

Event Set Time Request

3-17

Job

Job Phase E

MAIN
SEGMENT JOB PHASE D

JOB PHASE C

JOB PHASE B

Figure 3-1. Typical Job Layout

3-18

Furthermore, it is the responsibility of this initial task to control all other

phases loading requests. A Phase Load request may only be executed when

all tasks within the currently loaded phase have become quiescent.

The following are the user's Job Control request services supported

by ACES.

Job Schedule

The Job Schedule request allow the user to schedule a job for

execution. The job requested for exe:ution is placed immediately into

a job queue. Jobs are selected out of this queue based upon priority

and resources.

Job Terminate

A Job Terminate request specifies that a job is to be terminated.

Any task within a job can request termination of that job. A task of

one job cannot terminate another job.

A Job Terminate request causes all of a job's tasks which are

scheduled, to be deleted. The tasks which are currently exe.cuting or

in the wait state are allowed to proceed until they terminate. No re-

scheduling of periodic tasks is performed after the Job Terminate request

is received. When the last task of a job terminates, the job is removed

from the system and the memory partition made available.

Job Cancel

The Job Cancel request allows a task of a job to cancel a previously

scheduled job. If the job specified is in the job queue, it is deleted. How-

ever, if the job is not found in the queue (previously executed) or if it is

currently active, the request is ignored.

Job Phase Load

The Job Phase Load request allows a task in a job to request the

loading operation of another job phase of the same job into main memory.

The request may only be performed when all tasks of the currently resident

job phase are quiescent.

3. 3. 2 Task Control

The ACES operating system is intended primarily to provide a re-

liable environment for real-time jobs. Since such jobs are generally composed

3-19

of many independent tasks, considerable effort has been expended to provide
a powerful, convenient system for managing such tasks. The system pro-
vides a scheduling facility which, coupled with ACES' unique dispatcher,
allows the application designer to make effective use of the redundant and
parallel processing capabilities of ARMMS hardware. To control these
facilities, ACES responds to several requests.

Task Schedule

In order to enter execution, a task must be scheduled. There
are several ways in which a task may be scheduled:

1. Immediately.

2. After the occurrence of specified event(s).

3. After a specified time.

4. Combination of 2 and 3.

If neither a time nor a list of events is specified in a Task Schedule
request, the scheduled task enters contention for execution immediately.
Once it enters contention for execution, it is chosen for dispatching based
on its priority and the availability of sufficient resources (CPE's).

A Task Schedule request may specify a list of events and a minimum
number of events. In this case the task does not enter contention for exe-
cution until after the minimum number of the listed events has occurred.

A Task Schedule request may also specify a time to execute. In
this case, the task enters contention for execution at the specified time or
after the specified time interval.

If both a list of events and a time to execute are specified, the
system first processes the time requirement before beginning to monitor
for the specified events. If the application designer wishes to monitor
for the events during the time expiration, this can be accomplished by
the utilization of an Alert. An Alert request will begin monitoring an
event as soon as it is issued. The task schedule may then be based upon
the status of the Alert.

In addition to the above request types, if a task has the periodic
attribute specified in its Task Dictionary entry, ACES will automatically
reschedule the task repetitively. The specified period of the task is the

3-20

time between one scheduled execution (not entered execution) and the. next.

If the task has not completed a previous execution when its next period

occurs, it is not scheduled for that period. Moreover, if a task does not

complete execution for several periods, all executions of those periods will

be missed. After completing execution, the task will automatically be re-

scheduled for the next time period which has not already passed. If a periodic

task is scheduled with wait items and/or a specified time, these apply only

to the first execution. After the first execution the periodic scheduling
continues until the task is cancelled or the job terminates. If a periodic

task ABEND's during one execution, periodic rescheduling will still continue.

Task Terminate

When a task has completed its processing, it concludes with a

Terminate request. A Terminate request by a task indicates to ACES

that a task has completed execution and that its resources may be freed.

If a task is not periodic, it is deleted at this time. If the task is periodic,

it is rescheduled for the next future period of execution. Task Termination

is an event noted by ACES. Any task may wait for another task's termina-

tion.

Abnormal Termination (ABEND)

When a task finds itself to be in error, it may request an ABEND

instead of a normal termination. ABENDing of a task is a different event

than the normal termination of the same task and may be used to signal

special error handling in the application program. A task may also specify
an Abnormal Exit Routine (AER) to be performed in the event of an ABEND.

The AER allows a task to perform special cleanup operations in the event

of an abnormal end.

Several conditions can cause the system to force an ABEND for a

task:

o Irrecoverable hardware error

o Software error

o Task timeout

Most hardware errors allow automatic recovery. However, for

tasks executing on simplex CPE's or having variable data in simplex modules

of main memory, there are some errors which do not allow transparent

recovery. In these cases, the application designer must provide recovery

procedures.

3-21

The CPE hardware detects several types of software errors such
as illegal operation code, illegal address, divide by zero, etc. Through
the Task Option Table, the user has the option of ignoring these errors,
providing his own routines to handle them, or allowing the system to

ABEND his task when they are detected.

If a task remains active, either executing or in the wait state for
an excessive length of time, the system will force it to ABEND. A timeout
check is performed periodically at a rate set by the application designer.
Any task which remains active; i. e., has not terminated, for two successive
timeout checks will be automatically ABENDed. If it is necessary for a task
to wait for an extended period, it should do so through the use of the
scheduling facilities, rather than the wait facilities, in order to avoid a
timeout ABEND.

Task Cancel

A Cancel request is used to delete a previous Task Schedule request.
If the task has already begun execution, the Cancel has no effect unless the
task is periodic. If it is periodic, its periodic rescheduling will cease.

A Cancel request may specify either a task name or a task name
and number. If only the task name is specified, the Cancel applies to all
scheduled requests for the named task. If the task name and number are
specified, the Cancel applies only to the scheduled requests referencing
that specific task name and number.

Task Status

In order to complete the capability to control tasks, it is necessary
to provide the user with a means of ascertaining any task's current status.
This is provided by the Task Status request. This request allows the user
access to the status flags of the task's control information. These flags
indicate whether the task is scheduled, pre-empted, active, waiting, etc.
The current status of a task may be important to another executing task.

3. 3. 3 Event Processing and Recognition

Event Recognition and Response Processing consist of the algorithms
and design concepts required to:

o Allow application tasks to establish a system requirement
to monitor and record specific event occurrences.

3-22

o Allow ACES to initiate specific application and system

tasks in response to dynamic event occurrences.

o Allow application tasks to set and/or interrogate the
condition of defined events during execution.

An event is defined to be any occurrence for which monitoring logic

has been provided in the ACES. Currently defined events are, for example:

o Task Termination - a specific task has terminated.

o Task ABEND - a. specific task has abnormally ended.

o Program Flag - a program flag has been either set or reset.

Some events are single shots, while others are flip-flops. For example,
the Task Termination event is a single shot. That is, once it occurs, it is
irreversible. Thus, the event status cannot, once satisfied, become unsatis-
fied. Conversely, the Program Flag event is a flip-flop event. One task
may set the flag at one point and later another task may reset the flag.

Basically, ACES Event Processing logic provides application tasks
with two separate mechanisms, Waits and Alerts, to initiate controlled re-
sponse activity.as the result of an event occurrence. In reality, the two
mechanisms are closely interwoven to perform overall event monitoring.
However, for ease of understanding, each is discussed below.

Wait Processing

The Wait Call request allows a task to request that ACES place it into

a wait state until specific events, specified by the calling task, are completed
(occur). A calling task can specify any number of events which must be
completed before ACES may reactivate the task. In addition, the calling task
may request that a limited number of the specified events cause reactivation.
This, for example, allows a task to specify ten events to ACES, but state that
when any five of the events are satisfied, the task is to be reactivated.

In addition, the task can wait for a specified period of time. This
period of time may be specified as an absolute time or a time interval.

ACES allows a time specification simultaneously with event specifications.
In this case, the time expiration will occur before the events are monitored

for completion. In other words, while the time period is expiring, the events
will be disabled and not monitored for completion. After the time period
has expired, the events will be enabled by ACES and monitoring for their
completion will begin at that instant. This processing is identical to the

3-23

manner in which a Task Schedule request handles simultaneous time and
event specifications.

Alert Processing

Alerts provide a means of requesting ACES to monitor an event
for the user without having the user enter the wait state. An Alert request
specifies an event to be monitored and a name to be associated with that
event monitoring. Any event may be monitored for the user by ACES.
A unique name must be assigned to each Alert so that a user can specify to
ACES the exact event monitoring desired. For instance, Task A may
request an Alert for monitoring an event early in a mission (name A');
Task B may request an Alert for the same event much later in the mission
(name B'). It is possible that the status of A' and B' may be different
thereafter since the event could have completed after A' and before B'. The
unique Alert names allow the user to specify which Alert is desired, since
several Alerts may be monitoring the same event.

At any time after the Alert request, the user can query its status
by specifying the Alert name in an Alert Status request. In addition to receiving
the status, when complete the user receives a count of the number of times
the event has been noted complete since the Alert was initially set up. During
critical time phases, not only the event's status but, when complete, the
number of times an event has completed may be important to the application.

The user may at any time request ACES to stop monitoring an event
by issuing a Cancel Alert request specifying the Alert name.

In addition to the three Alert commands (Initialize, Status, and Cancel)
specified above, the Alert is useful in another manner. Whenever a wait
is desired for both time and events, the wait processing does not start
monitoring for event completions until the time period has expired. In cases
where the user desires to have the events monitored during this time period,
the following procedures can be performed. First, an Alert request is
made for each event to be monitored during the time expiration. Then a Wait
request is issued specifying the time and events to be waited for completion.
However, the events for which waits have been requested do not directly
specify the events to be monitored, but rather contain Alert names as the
events. ACES, after the time specification has expired, scans the events
to be waited for, to determine if Alert names are specified. If so, the names
are looked up in the Alert file, and the status of the wait event is set to the
current Alert status. Thus, the Alert allows the monitoring for an event
during a time expiration.

3-24

Event Processing

ACES receives requests from CPE's and IOP's that it note that events
have occurred. These Event Set requests provide ACES a mechanism for
knowing when events occur. Whenever an Event Set request is entered into
ACES, all Alerts and Wait Events are scanned to update the status of the
events being monitored.

When all events specified by a task when entering the wait state have
completed, the task's "wait state" is removed and it competes with other
tasks, by priority, for dispatching.

3. 3. 4 Input/Output Processing

The ACES I/O system provides two distinct I/O facilities; first, a

simple streamlined access scheme to perform I/O to real-time devices
requiring only a few words of data; secondly, a more complex, multibuffering
access scheme for devices requiring a transfer of many words of data.
Additionally, provisions have been made available for the future addition of
a FORTRAN-type format control system and/or a bulk file management
system.

Both types of I/O currently supported by ACES perform I/O through
files. The following explains the ACES file philosophy.

File Manipulation

All I/O requests in the ACES system must reference a file. Each file
which may be used by a job must have an entry in the job's File Description
Table. A file description includes its name, current status, pointers to its
buffers, logical device number, etc.

A file belongs to a job and may be used by any task within the job.

Any task may Open, Close, or access any file belonging to its job.

Before any I/O can be performed on a file, the file must be Opened.

This causes buffers to be allocated and initialized, and the logical device to be

allocated for use. These resources remain allocated to the file until it
is Closed. When it is no longer needed, a file is Closed to release its re-

sources. When a job is terminated, any Open files belonging to it are

automatically Closed by ACES.

1. Open File

This request initializes a file for I/O operation. For a buffered I/O

3-25

file, the buffers are allocated and, for input files, the input buffers are primed.

Also, during the Open operation logical devices are allocated. Logical
devices may be allocated for either shared or exclusive use. An Open request

may be denied if the logical device is not available. This may occur if:

o The device has failed and there are no alternatives,

o The device is requested for shared use and another user
has it for exclusive use, or

o The device is requested for exclusive use and another
user has it for either shared or exclusive use.

2. Close File

This request makes a file unavailable for I/O operations through a
File Description Table. The logical device and any core buffers used by
the file are deallocated and are immediately available for other uses. Any

I/O operations outstanding on the file when the Close is requested are cancelled
immediately.

Data Manipulation

As stated above, ACES provides for two types of I/O service requests.
The following describes these two I/O requests.

1. Buffered I/O

The Buffered I/O request allows the user to access data in buffered

I/O files. Through the use of its three options (Release, Get, and Wait), the
user may control the operation of I/O.

All I/O buffers belong to the system. At any time the user may obtain
possession of one of the multiple buffers belonging to a buffered I/O file.

While it is in the user's possession, the user may manipulate the data in the
buffer in any manner. When the user is finished with it, a Buffered I/O
request with the Release option is performed. This releases the buffer to the
system which will proceed to perform I/O on it. For input, it will fill the
buffer with new data; for output, it will write the data to the specified device.
When the Get option is specified in a Buffered I/O request, the system will
examine the next buffer. If it is ready for the user (I/O complete), a pointer
to the buffer is returned; if the buffer is not ready, the Wait option is
examined. If the Wait option is not set, the routine returns to the user with
an indication that the buffer was not available. If the Wait option is set, a
Wait Call request is performed for the user causing the task to enter the
wait state awaiting I/O completion on the pending buffer. When the buffer is

3-26

ready and the task reactivated, control is returned to the caller with a pointer

to the buffer.

2. Direct I/O

The Direct I/O request allows an efficient means to perform I/O
where only a few words of data are to be transferred. At any one time, the

ARMMS system may accommodate only one Direct I/O request. If additional

requests are made by other processors, they will cycle awaiting availability

of the Direct I/O facility. This facility bypasses the normal buffering and

queuing mechanisms of the ACES I/O system to allow the user to read or

write a limited amount of data to/from a real-time I/O device. The user

must provide any and all buffer space needed.

3. 3. 5 Resource Control and Services

ACES controls the various resources needed to execute application

programs and provides a variety of user utility services. This section

describes the control of several resources and services not described else-

where inthis document.

Main Memory Resource C6ntrol

ARMMS main memory is divided into two categories - ACES memory

and user memory. ACES memory occupies contiguous address space and is

always resident in the maximum criticality logical memory allowed by ARMMS.

User memory comprises the rest of available logical address space and is

subdivided into four partitions each of which may accommodate one job.

Individual modules (8K words) within a partition may, hardwarewise, operate

in a simplex or duplex mode. After a job is loaded into a partition, the rest

of the partition is available to the user as dynamically allocated memory. Several

services are provided to the user to control memory allocation.

1. Get Main Memory

This request service allocates an area of dynamically allocatable

memory to a task for temporary storage. A task may have, at most, one such

temporary storage area at any one time. This is primarily due to the hard-

ware constraint of one temporary storage base/bound register. This facility

is also used to provide a temporary area for I/O buffers.

2. Free Main Memory

This service allows the user to inform ACES that the temporary storage

area previously allocated to the requesting task is no longer needed and may

3-27

be released. The temporary storage base/bound register is reset.

3. Boundary Mover

The boundaries of the four partitions are initially set at system start-

up time. Thereafter, the user may change the boundaries at any time.

The Boundary Mover request allows the user to move the boundary between

two adjacent partitions. A boundary can be moved only into an empty parti-

tion; i.e., if the partition is to be moved to a lower address, the lower

partition must be empty. One of the criteria for loading a job is the avail-

ability of a partition of sufficient size. The Boundary Moving request is

provided so a user can dynamically control the partition size, therefore,

increasing job throughput by knowing the system requirements during a
given time period.

Information Protection

A system of interrelated tasks must have shared data. This sharing

of data creates a potential for access conflicts among cooperating tasks. The

ACES system provides a means of control for such conflicts through the

Locked Variable request service. Any contiguous set of shared data locations

may be "Read-Locked" or "Write-Locked".

A read-lock, applied to a set of data, prevents any other task from

modifying that data set until the read-lock has been removed. A write-lock,

applied to a set of data, prevents any other task from reading that data set until

the write-lock has been removed.

To accomplish the locking, ACES uses "Lock-Variables". A lock-

variable is a memory location that contains lock information pertaining to a
contiguous set of shared data locations. To facilitate their use, a hierarchy

of lock-variables may be defined as depicted in Figure 3-2. Two services

are provided to control the data lock facility.

1. Lock Variable

This request applies a lock to a Lock Variable. If the lock cannot

be granted immediately (due to the variable being previously locked), the

task will be notified. It is the user's responsibility to enter the wait state,
awaiting an unlock of the variable, if no further execution can be performed
until the lock is obtained.

2. Unlock Variable

This request removes a lock placed on a data lock by a Lock Variable
request. Any tasks awaiting the variable to become unlocked will be removed

3-28

Level 3 Locks Level 2Z Locks Level 1 Locks

Lock Variable 1
Lock
Variable n+l

Lock
Variable 2

Lock SHARED

ETC Variable n+Z i DATA

LOCATIONS

Lock

Variable n

Figure 3-2. Lock Variable Usage

3-29

fxom the wait state.

System Subroutines

ACES provides a service for managing the sharing of common sub-

routines among independent tasks. (This service is not for calling a task's

own subroutines.) Two services are provided to control the system sub-

routine facility.

1. System Subroutine Call

Certain System Subroutines which are common across many jobs are

included in ACES domain. Other System Subroutines may be included in

individual jobs. When the jobs are loaded, the System Subroutine list is

provided to ACES. Then a task issues a System Subroutine request to

ACES when a subroutine's execution is desired. If the subroutine is unavail-

able (non-reentrant and in use), the task is notified that the subroutine is

not available. It is the user's responsibility to request a Wait Call if no

further execution can be performed until the subroutine is available.

When the System Subroutine is available, all of the task's current

environment (registers, program counters, etc.) is saved by ACES. The

System Subroutine is initiated by ACES with the subroutine's own base/bound

registers, program counters, etc. The only item transferred between

routines is the address of the parameter list (if one). The System Subroutine

is executed on the same stream that requests the service to provide efficient

response time and have the routine execute at the same criticality as the

originating ta sk.

2. System Subroutine Complete

Each System Subroutine must issue this request at its termination.

This request signals ACES that the routine is complete and is available

for another request. ACES then reloads the processor(s) with the task's

original environment and restarts the stream.

Time

ACES maintains a real-time clock which is used in many of its

scheduling functions. This clock is made available to the application programs

via an ACES service request. The basic resolution of this clock is 100 ps.

The format in which the time is returned to the user is variable and dependent

on the requirements of the application.

3-30

3. 3. 6 Fault Processing

Fault Processing is an integral part of the ARMMS project. ACES

has been designed with fault processing as one of the major items to be
considered in every program's design. The following summarizes the
ACES fault processing philosophy.

Fault Processing Overview

ACES fault processing depends heavily on the excellent fault detection
facilities of the ARMMS hardware. Virtually all hardware faults are detected

by the hardware, which notifies the BOSS processor via an interrupt. Within
the BOSS processor, ACES software analyzes the faults and takes appropriate

diagnostic actions.

ACES first attempts to recover the operation of the affected task.
In most cases, register data can be recovered and saved for the dispatching

system just as if the task's execution had been pre-empted by a higher
priority task.

Next, all faultless hardware must be placed back into production.
Any module(s) which are not suspect can be immediately returned to pro-
duction. For instance, if a duplex processing stream detects a discrepancy
and halts, and one of the processors can immediately be identified as at

fault (from hardware indications), the other processor can be returned to

production immediately. Diagnostics are performed to verify the existence
of a failure. If the failure cannot be reproduced, it is assumed to have

been transient and the module is then returned to production.

When a module fails, an attempt is made to replace it from the

spare pool, powering up spare modules if necessary.

If a module has indeed failed, and there is no spare to replace it,
then the capabilities of the system are reduced and steps must be taken to
reduce the CPE work load. This is accomplished by calling the Task

Dictionary Decrementor to cause a job to step to a Task Dictionary of Lower

Levels (DOLLs). Each dictionary specifies the tasks that are valid during

its dictionary period and the minimum hardware requirements (resources)
necessary for the DOLL to be meaningful. Each succeeding DOLL requires
less resources than its predecessor. DOLLs provide a job a means of de-

creasing its processor work load by specifying fewer tasks, etc., as re-

sources decrease rather than immediately aborting or decreasing its

efficiency to the extent that deadlines cannot be met.

3-31

When a job is initially loaded, its DOLLs are examined, and the

highest level dictionary which the available hardware will support is initiated.
Thereafter, whenever a hardware resource fails, the Task Dictionary
Decrementor is called, the task dictionaries of all active jobs are examined,
and the highest level which the currently available hardware will support
is chosen for each job. If any of the dictionary requirements for a job cannot
be met with the available hardware, the job will be deleted.

When it is not busy with detected faults, the fault processing system
performs periodic diagnostics on all modules - active, spare or failed. It
is possible for such testing to locate a failed module which has become
functional again. When this happens and the module is put back into produc-
tion, the Task Dictionary Incrementor is called to adjust all job's DOLLs
to their highest possible level to make full utilization of the newly available
hardware.

System Initialization/Restart

The ACES initialization/restart facility is provided to initially start
the ACES system or to restore the system after a massive failure or
transient which has caused ACES to function improperly or stop functioning
entirely. The following briefly describes the means by which ACES is
initialized or restarted.

First, the system is cleared of any active jobs, tasks, wait items,
and Alerts. Next, all hardware modules except BOSS and ACES main memory
are cleared and all ACES tables and queues are initialized or re-initialized.
An operable set of CPE's, memories, and IOP's is then located (by performing
diagnostics) and configured. Once the system itself has been restarted, it
is possible to begin execution of jobs from the Job Queue.

3.4 ACES Program Description

This section presents the detailed functional design of the ARMMS
Control Executive System. The material in this section is intended to
provide a summary of the overall executive program logic.

Each of the following subsections discusses the major software
functions to be performed. Where necessary for clarification, individual
routines are discussed. Individual program module descriptions and flow-
charts are not included in this document. They can be found, however, in
M&S Computing Report No. 73-0018, "Complete Executive Detail Design
Final Report", prepared for the Hughes Aircraft Company.

3-32

Before proceeding into individual subsections of ACES a few comments
are applicable to the entire system.

o Priority Structure

The priority structure for ACES is most simple in nature. There are

four levels of priority. The following describes the purpose of each

priority level from the highest to lowest level.

Initialize Reset - This priority level is the highest available.

This level, when activated, will cause any lower level
priority levels to be suspended. The purpose of the level is

to perform BOSS Initialization or Reset. Upon the initial
power up sequence, ACES must perform several basic house-

cleaning functions. These functions are the same as those
needed if massive hardware and/or software failures occur

which exceed ARMMS failure correcting capability. Upon
receiving control, this priority level resets all ACES tables

and begins to establish control of the entire system.

Timer Level - This priority level is responsible for updating

all software clocks from hardware timer interrupts. The
level is a high priority level since an extremely fast response
time is critical to maintaining an accurate time over a five
year mission.

Request Level - This level processes all fault detection and

service requests from CPE's and IOP's. Approximately ninety
percent (90%) of all ACES software modules execute at this
level, therefore, it is the major level with which ACES is
concerned. Any fault detection mechanism or service request
will cause this priority level to become active. By handling
these functions at this level, an efficient response can be
provided to both.

Diagnostic Level - This fourth and lowest level is not activated

due to an interrupt. It is the base or background level for
ACES. The level is continuously looping, looking for faults
which may have previously been undetected and performing
diagnostics when no other ACES function is needed. The level
is only active when no other priority level is processing.

o Layering

In designing ACES, considerable emphasis has been placed on software re-
liability. Layering is a new concept within thc programming environment

3-33

whose goals (simplification of maintenance and verification, and
increased system reliability) are synonomous with ACES.goals. It
therefore is highly desirable to attempt to incorporate this technique
into the detailed functional design development effort.

The layer concept attempts to force certain structuring upon the
software design. This software structuring forms layers of "levels
of abstraction". Each layer includes one or more related software
components which share common data. Logically, layers are stacked
upon each other to form a hierarchical structure. Each layer in
the hierarchy performs a unique function and has its own exclusive
resources. The lower the layer is in the hierarchy, the more closely
associated with the actual hardware are its components. Figure 3-3
shows a common layering example in which components in the top
layer perform content addressing while the lowest layer performs
physical addressing.

Figure 3-4 presents a pictorial view of some of the basic groundrules
of layering. First, components within one layer may reference
components only in lower layers, not in higher layers. Secondly, a
component in one layer may directly reference its own layer's
resources (devices, data, etc.), but not resources of another layer.
However, if a component in one layer needs information (data) avail-
able in a lower layer, it may call a component in the lower layer
and request information available there. Components have knowledge
only of components in lower layers; never can a higher layer resource
be obtained.

One of the advantages of layering is the ease of checkout. Layers
are checked out beginning at the lowest layer. Once that layer has
successfully been tested, the next highest layer may be added and tested.
Since each layer is logically independent of upper layers, software
"bugs" should only be found in the newest layer to be tested.

Figure 3-5 presents an overall view of the ACES layering scheme.
Table 3-2 details individual routines within each layer. Considerable
effort has been expended to insure its correctness and validity. In
addition to the partitioning of all ACES modules into layers, it should
be noted that a functional separation of fault detection/recovery from
the executive services has been performed. This was done to insure
that these services could easily be divided into separate hardware
modules if future ARMMS requirements dictate. It should also be
pointed out that the Interrupt Management layer (layer 0) is logically
separated from the other layers. This was performed to insure its
independent operation from both executive services and fault detection/
recovery. If these services do become divorced from a single

3-34

APPLICATION

Content Addressing

DATA BASE
MANAGER

Logical Addressing

FILE
MANAGER

Physical Addressing

DEVICE
HANDLER

Devices

Figure 3-3. Common Layering Example

3-35

LAYER n FUNCTIONS RESOURCES

LAYER n-1 FUNCTIONS RESOURCES

YES NO ES NO

LAYER n-m FUNCTIONS RESOURCES

Figure 3-4. Layer Groundrules

3-36

ACLS LAY.El'NG STRUC'T URE

EXECUTIVE SERVICES FAULT DETECTION/RECOVERY

LAYER RESOURCES LAYER RESOURCES

10. Request Management

9. Job Management JPQ JAL
JIB JDF

8. I/O Management I/O Request Queue
I/O Priority Queue

7. Service Management Lock Variable Table
Subroutine Table

6. Time Management Software Clocks

5. Scheduling Management

4. Event Management File Memory

3. Task Resource LAAT

Management Module Status Table

2. TD-TQM Management Task Dictionary
TQM

1. (A) Initiation Manage- Master Execution (B) Diagnostic Management Module Status Table

ment Table Master Execution Table

0. Interrupt Management R. T. Clocks
Interrupts

Figure 3-5

ACES LAYERING COMPONENTS

LAYER PROGRAMS MAJOR TABLES

10. Request
Management Request Processor

Special Request
Diagnostic Request Processor

9. Job
Management Job Scheduler Job Information Block

Job Activator Job Priority Queue
Job Initiator Job Dictionary File Index
JPQ Searcher Job Active List
Job Active List Maintenance Job Dictionary File
Job Terminator
Job Cancel
Task Dictionary Increment
Task Dictionary Decrement
Change Task Dictionary
Search Task Dictionary
Job End
Timeout
Task Terminate
Abnormal End
Abnormal End Initiate
Job Terminate Cleanup
Task Terminate Cleanup
Job Phase Loader

8. I/O
Management File Open Channel Status

File Close I/O Request Queue
Close all User Files I/O Priority Queue
Buffer Control Physical I/O Device
Buffered I/O Request Buffer Description
Device Control
Direct I/O Request
IOP Main Cycle
DIO Checker
Queue Mover
Channel Initiator
I/O Finish
Normal I/O Finish
Retry Processor
Select Alternate Device
I/O Error Logger
Cancel I/O

Table 3-2

3-38

ACES LAYERING COMPONENTS
(continued)

LAYER PROGRAMS MAJOR TABLES

7. Service
Management System Subroutine Call Subroutine Call List

System Subroutine Complete Lock Variable Table
Lock Variable Memory Partition Table
Unlock Variable
Get Main Memory
Free Main Memory
Memory Partition Allocation
Partition Deallocation
Partition Boundary Mover
Job Resource Comparator

6. Time
Management Timer Processor Software Clocks

Timer Queue Processor
Clock

5. Scheduling
Management Task Scheduler

Timer Scheduler
Priority Scheduler
Find TQM Slot
Return TQM Slot
Wait Call Processor

4. Event
Management Wait Event Processor File Memory

Alert Event Processor
Alert Call Processor
Alert Terminate
Alert File Scan
Enter Wait Items
Wait File Processor
Turn on Wait Items
Disable Wait Items
Find File Memory
File Memory Maintenance
Delete Wait Items
Return File Memory

Table 3-2
(continued)

3-39

ACES LAYERING COMPONENTS
(continued)

LAYER PROGRAMS MAJOR TABLES

3. Task Resource

Management Task Cancel LAAT
Task Status Unit Status Table
Task Dictionary Comparator Module Status Table
Job-Task Halt

2. TD-TQM
Manager Task Dictionary Manager Task Dictionary

TD Entry Read Task Queue Memory
TD Entry Write
TQM Manager
TQM Read
TQM Write
Link/Delink Priority Queue,
Link/Delink Timer Queue
TQM Maintenance
Pre-dispatcher
Dispatcher

I-A Initiation
Management Start Task Available Resource Word

Configurator Master Execution Table
Table Update Connect Word Table
Stop Task
Reservation Checker
Minimum Priority
Stream Identification

1-B Diagnostic
Management Failure Pre-processor Master Execution Table

Fault Processor Test Information Table
Tester Module Status Table
Reservation Call Resource Request Word
Reservation Return
Schedule Service Request
Memory Failure Processor
Page Fault Processor
Pager

Table 3-2
(continued)

3-40

ACES LAYERING COMPONENTS
(continued)

LAYER PROGRAMS MAJOR TABLES

0. Interrupt
Management Interrupt Processor Real Time Clocks

Read MSW Interval Timer
Mission Timer Processor Interrupts
Timer Control
Start Stream
Stop Stream
BOSS I/O

Table 3-2

(continued)

3-41

processor, it is possible that a new layer 0 would have to be designed
for each.

The following subsections follow the ACES layering scheme for
presentation. It is felt that this manner of presentation is the most
valid from the system design point of view and the most meaningful
from a reader's viewpoint.

3. 4. 1 Request Management

The highest layer of ACES is involved in the distribution of service
requests to other parts of the system. Requests may come from three
sources:

1. Application users.

2. ACES routines at different priority levels (special request).

3. ACES diagnostics system.

All three sources result in the calling of the appropriate service
routine to process the request. Since the three sources generate request
via differing tables and queues, there are three routines to handle the
request. Figure 3-6 depicts a conceptual view of request processing.

The Request Management layer is responsible for calling Dispatcher.
Before Dispatcher is called however, the layer insures that all outstanding
service requests have been performed. Also, the Predispatching routine
must indicate that Dispatcher execution is needed. If not, the Dispatcher
is not called.

The following discusses each of the sources that request services
via the Request Management routines.

Application User Requests

When an application user (or an IOP) requests a service (e. g., Event
Set) of ACES, the Module Status Word (MSW) of the executing processor is
modified by the processor's hardware/firmware to contain the request.
This changing of a processor MSW causes an interrupt to be generated in the
BOSS processor. This interrupt is received by the ACES interrupt handler
and the service request is passed to the Request Management routines. The
nature of the services needed is specified in the requesting module's MSW.
The MSW is divided into two sections; a fault section and a request section.
Hardware fault masking makes it possible for both sections of the MSW to

3-42

Application User Request

(CPE's, IOP's)

Communica- Request Special
tion Queue esRequest

A~rea ProcessingTable

Requests Request for

for services service from

outside of different

diagnostic priority levels

area (if

needed) iagnostic Service

rocessing Routines Dispatcher

Figure 3-6. ACES Request Processing

3-43

contain valid data. The fault section is examined before the request section

is examined. If fault processing discovers that the task is irreparably*
damaged, it can cause the task to be aborted by changing the request code

to an ABEND, which will then be processed.

The user Request Management routines insure that all CPE's or

IOP's of a stream make the same request and, therefore, are in lock step.
If the same request is not made, a fault is noted by the system and the

request continues if the proper service request can be determined. The user
Request Management routines must, if the request was made by a CPE,
determine from which task the request was made. The information along

with the task's job ID must be appended to the request so that service

routines which process the request can perform validity checking, etc.

The job ID must be carried internally by ACES as up to four jobs may be
in execution at a time and the user is unaware of the other jobs. Thus,

two tasks in separate jobs might request a Task Schedule specifying the
same task name, each attempting to schedule a unique task in its own job.

It is the system's responsibility to append the job ID to the user's request

so that it can distinguish the two separate job requests.

ACES Special Requests

Various parts of the ACES software operate on four different interrupt
priority levels. It is sometimes necessary for routines at different priority
levels to utilize some of the service request facilities. To avoid the possibility
of recursive entries in such service routines, the capability exists whereby
an entry is made in the Special Request Table. The Request Management
routines, executing at the proper priority level, call the proper routines.
This routine performs as a basic scheduling system within ACES.

ACES Diagnostic Requests

The Diagnostic Processing System has been designed to operate as
independently as possible from the rest of ACES. It was designed such that
it does not need to directly call any ACES routines outside of the Diagnostic
Processing section. To implement this scheme it was necessary to provide

a means by which the Diagnostic Processor could request execution of user
services similar to those described above. This is performed by placing
the request for a service into a Communication Queue Area. This service
request is acted upon by the Request Management routines the next time
the routines are placed into execution.

3-44

3. 4. 2 Job Management

Job -Phase

The structure of a job is defined such that a job consists of one or
more job-phases. Each job-phase may consist of one or more tasks.

A job may be defined as having separate and distinct parts, with each

part executed in a prescribed sequence. These parts are defined as
job-phases, where a job-phase may consist of one or more tasks.
Tasks of one job-phase may communicate with tasks of another
job-phase but tasks of one job may not communicate or reference task
of another job. A job-phase must be activated by an executing task.
That is, a task of one job-phase must activate subsequent job-phases.
ACES' job-phase activation consists of resolving all references and
scheduling the initial job-phase task.

System Task

ACES provides a comprehensive set of commands to drive a user

application program. The multitasking, multijobbing facilities allow the
user complete flexibility in the design of the application system.

The ACES Task Management feature allows tasks to be scheduled
immediately, based upon a future time, and/or designated event(s). Through

these facilities the application can implement an efficient multitasking task
structure.

The Job Management fa.cility provides similar features for scheduling
jobs, but provides it in a different form so that greater latitude may be

achieved. This latitude is provided in an ACES concept called the "System
Tasks". The following discusses this concept.

The System Task(s) is one or more application tasks written by the user.
Unlike other task codes, the System Task's code and associated control blocks
are placed into ACES main memory and remain there, permanently resident,
throughout a mission. The System Task's function is to control the overall

application structure system design. This is accomplished by monitoring

time and events, and scheduling jobs, deleting jobs, etc., based upon these
conditions. The System Tasks function a.s any other task; i.e., they compete
with other tasks for facility resources (CPE's, IOP's, etc.), they enter the
wait state, schedule other jobs, etc. These System Tasks are grouped to-

gether to form a job. The only difference between this job and the other job
is that this one resides in ACES memory. Residing in ACES memory does not

distinguish this job from any other application job. It is only for convenience
that the job's code is placed into ACES memory.

3-45

Job Scheduling

Requests for job scheduling will be processed by a system level task.
Requests for job scheduling may be entered by an executing task through the
Job Schedule Request. Figure 3-7 depicts the Job Processing components
at a functional level.

An executing task may specify that any job defined by the Job Definition
File (JDF) be scheduled (placed in the Job Priority Queue). Job scheduling
will be accomplished by the established ACES interface linkage for system
services. A job scheduling request will require parameters to identify the
specified job.

The ACES job scheduling routine must determine job identity from the
request parameters. When the identity is found, the job priority and Job
Information Block (JIB) address are extracted from the Job Definition File
Index (JDFI). Using the job priority, the JIB address is positioned in the
proper Job Priority Queue (JPQ) position, maintaining the priority order
of all entries in the JPQ. After the entry is made in the JPQ, the job schedule
function is complete.

Job Activations

After a job is scheduled, an attempt is made to activate the job. The
ACES job activation routine searches the JPQ for the highest priority job con-
tending for initiation and execution. The associated Job Information Block
(JIB) is examined to determine the required initial resources. Current re-
sources are then scanned to determine if enough resources are available
to support execution of the job. If sufficient resources are available, the
required resources are allocated and execution of the job is initiated by
initializing the first Task Dictionary and scheduling the job's primary or initial
task. If sufficient resources are not available, the next JPQ entry is de-
termined and its resource requirements are examined.

The JPQ search always proceeds in a high to low (or first to last) order.
That is, jobs with higher priorities are considered for execution before jobs
with lower priorities. If enough resources are not available, lower priority
jobs are then considered. So, any job to be executed is examined first by its
relative position in the JPQ (priority) and then by the resources which are
available as compared to those required by the job. These resources consist
of only those necessary to initialize execution and do not include those dynam-
ically allocated by each task of the job.

3-46

Job Job
Scheduler Activator

Resource

Comparator

Memory Job
Resource Active

JDFI JpQ Pool List

Job Job

Cancel Terminator

Figure 3-7. Job Processing

3-47

This JPQ search process continues until a scheduled job is found
that can execute with the resources available. If no eligible job can be
found, the job search is terminated and is not started again until either
an executing job terminates and frees additional resources or a new request
is made to schedule a job.

When a job enters execution, it remains in execution and all resources
remain allocated until the job terminates either normally or abnormally.
Jobs, unlike tasks, are never pre-empted in order for higher priority jobs
to obtain their resources. If jobs having higher priorities are scheduled
while lower priority jobs are executing, the higher priority jobs must wait
until a job(s) completes execution, if there are not enough resources to
support their execution. There is no deviation in the sequence for executing
a job. It always is in the following sequence: first schedule, then execute,
and finally terminate.

Job Termination

Jobs are never suspended for any reason. When a job enters execution,
it remains in execution until it terminates normally or abnormally. As
in scheduling, jobs are terminated by an executing task. The task which
terminates a job may optionally schedule another job, but it must, in any
case, signal the system that the job is normally or abnormally terminating.
A task may terminate only the job of which it is a part. Tasks of one job
may not terminate other jobs. This is not allowed since errors in one job
should not be allowed to propagate to the entire system.

When a job terminates either normally or abnormally, all resources
allocated to that job are returned to the system, or de-allocated.

Job Tables

Figure 3-8 depicts the job scheduling intra-table communication.
Each job of the system will be defined by a central information file which is
called the Job Definition File (JDF). All jobs which are eligible for scheduling
are identified and defined by the JDF. The JDF will be built by an off-line
system generation function so that during real-time operation every job
eligible for execution is predetermined. When the system is operable,
JDF is fixed so that job definitions may not be dynamically generated or
modified. The JDF will consist of a number of Job Information Blocks (JIB's),
each of which will define one complete job. As many JIB's as necessary
will be provided for the predicted system application.

3-48

Job Active List

Job Job Task
Definition Priority Diction-
File Queue ary
Index (JPQ) (Active)
(JDFI)

Main Memory

Job Definition BuRfTorage
File (JDF)

Job Task Dictionaries (Non-Active)
Identification
Block (JIB) Task Tasl Program

JIB A B _ Library

Figure 3-8. Job Processing Tables

To provide an efficient access method for job scheduling functions, a
Job Definition File Index (JDFI) will be provided by the system. The JDFI
is main memory resident and contains pointers to the JDF, which is normally,
due to its size, resident on bulk storage device. The JDFI allows ACES
job scheduling to perform efficient validity checks on job names and provides
an efficient mechanism for referencing a particular JDF entry.

In order for a job to be eligible for execution, it must first be scheduled.
A Job Pending Queue (JPQ) is maintained to provide the system with a current
list of jobs that have been requested for execution. Scheduling functions will
provide capability to place a request for a particular job execution in the JPQ.
The JPQ is an ordered table of pointers to JIB's of each scheduled job. Sched-
uling a job consists of finding a JDFI entry for a job, picking up the JIB

,pointer fromthe JDFI, and entering the pointer in the JPQ in the appropriate
priority position.

The JPQ is an ordered'list of scheduled jobs such that the highest
priority job contending for execution will be the first entry in the queue.
Lower priority jobs appear in the JPQ in descending order. Jobs having
the same priority are entered on a first-in, first-out (FIFO) basis. Each
JPQ entry contains a single parameter which is the address of the JIB for
the requested job. The JPQ contains sixteen entry locations. This implies
that the maximum number of jobs scheduled at any time is sixteen.

3. 4. 3 Input/Output Management

I/O Hardware Functional Overview

Due to schedule limitations, the hardware I/O section of ARMMS was
not defined at the time the software was designed. Many assumptions concerning
the hardware were made and discussed with ARMMS hardware personnel. It
was agreed that all assumptions were reasonable and software design should
proceed using them. The following briefly describes major hardware assump-
tions made to design the software I/O system. Figure 3-9 depicts the con-
ceptual ARMMS I/O configuration.

The I/O Processing (IOP) unit is an integral part of the ARMIMS I/O
system. Each IOP is capable of controlling the Bus Control Unit (BCU). An
IOP is expected to be a small computer, a sub-set of a CPE. Unlike the
CPE's which are constantly being reconfigured into TMR, duplex, and simplex
logical modules for differing redundancy requirements, the IOP's are never
reconfigured for different I/O requests. IOP's are configured to function as
one logical unit. This logical unit may be composed of one, two, or three
(as mission requirements dictate) IOP's functioning as one IOP; e. g., in
lock step. The only reconfiguration during a mission is when one IOP of a
logical unit fails and is replaced by a spare IOP.

3-50

Devices

E MaFigure 3-9. Conceptuogical BCU
IOP (I/O Data Bus

Memory unit channels)

CPE
Bus

CP LMemory Bus
CPE

BOSS

Figure 3-9. Conceptual ARMMS Configuration for I/O

The CPE's and BOSS request I/O services via main memory queues
and tables. Here, the I/O operations reference logical I/O devices. Soft-
ware in the IOP translates logical to physical device numbers, starts I/O
operations, handles I/O completions, and retries in case of failures.

The IOP interfaces with a BCU which contains several independent
channels. Each of these channels is capable of operating independently of
the IOP or other channels to transfer a block of data between memory and an
external device via the data bus. All of these channels are functionally
identical; any of them may access any area of main memory and any device
on the bus. All devices are on the data bus. Any combination of channels
may be in operation simultaneously.

A channel begins an I/O operation when it receives an initiate command
from the IOP specifying an I/O device, I/O bus, I/O operation code, word
count, and starting address. The channel establishes communication with the
requested device via the specified bus, transmits the operation code to the
device, and when the device is ready for it, proceeds to transfer data to or
from the device beginning at the starting address. The channel signals the
IOP when the operation is finished due to satisfaction of word count, termination
requested from device, or an error which does not allow the operation to
continue. At any time, the IOP can perform an inquiry of the BCU to ascertain
device address, bus address, error code, and remaining word count for
any channel.

I/O Management Processing

The ACES I/O system comprises a group of interrelated software
modules executing in the various processors of the ARMMS system. The
user, whose task executes in the CPE, interfaces with the I/O system via a
group of re-entrant service routines which execute in the CPE. Whenever
I/O is desired by the user, the user's executing stream branches to a service
routine in main memory. BOSS intervention is not required. These CPE
I/O routines receive user request, handle buffers, and request IOP services
via the DIO Transfer Area and the I/O Request Queue.

In the IOP, Direct I/O (DIO) requests are handled immediately; I/O
Request Queue entries are placed in the I/O Priority Queue to be processed
in order of priority as resources become available. I/O completions are
processed by the IOP which notifies ACES of the event. The ACES Event
Processing system is responsible for restarting any tasks waiting for the
completion of that event.

Since Opening and Closing of files causes shared resources to be
allocated and deallocated, and thus may propagate failures throughout the
system, these services are performed in BOSS.

3-52

BOSS also has an I/O capability of its own similar to the CPE I/O
capability. BOSS I/O capability utilizes the Open and Close routines to

initialize I/O files. BOSS utilizes the I/O Request Queue for individual I/O
operations. See Figure 3-10 for ACES I/O System.

CPE Routines

The Direct I/O request routine handles the CPE processing of the
DIO facility. This routine locks the DIO facility (waiting if necessary until

another CPE has unlocked the facility), makes a request for the IOP to
perform Direct I/O, and delays until the I/O is completed.

The Buffer Control routine processes Buffered I/O requests from
the user or from (when supplied) the File Manager and Format Control routines.

It is organized around the Release, Get and Wait options. The Release option
causes buffer rotation and the queuing of an I/O request for the buffer being

released. The Get option causes the next buffer to be examined. If it is not
ready and the Wait option is set, the Buffer Control routine issues a Wait

Call request to BOSS requesting a wait for I/O completion on the next buffer.
When this I/O is complete, the task will resume processing in the Buffer

Control routine which will then return to the caller with the next buffer.

IOP Routines

The IOP Main Cycle is the scheduling routine for the IOP. It tests
for conditions requiring IOP services and calls other routines to handle

these services. When there are not outstanding requests for services, the
IOP's cycle' facility is used to render the IOP dormant.

The DIO Checker routine checks for Direct I/O requests and handles
them if enough resources are available.

The Queue Mover takes requests from the I/O Request Queue, where
they.are placed by other modules, and moves them to the I/O Priority Queue
which is used solely by the IOP. This routine is also responsible for trans-
lating the user's logical device address to a physical device address for use

by other IOP routines.

Whenever there is a channel free, the Channel Initiator is called. It
searches the I/O Priority Queue for the highest priority request which is not
awaiting a busy device. If an outstanding request is found, it initiates the
operation on the first available channel.

The I/O Finish routine is called if there are one or more channels with
a finished status. This routine determines the status of the operation and
calls an appropriate routine to handle the various conditions. If no error is

3-53

BOSS

CPE I Open

User

Close

DIO Buffer

Request Control
Wait

Pro-
cessing

MEM BOSS

DIO I/O I/O I/O
Transfe, Priority Request
Area Queue Queue &
Block Lock

vent
IOP Pro-

Queue cessing

Mover

DIO
Checker

Channel I/O I/O Complete
Initiator Finish

Event

I/O Channel Hardware

Figure 3-10. ACES I/O System

3-54

detected, Normal I/O Finish is called. If an error is detected and it can be
retried, the Retry routine is called. If the fault is of a type which cannot
be retried, or it has already been retried the maximum number of times
(as specified by the application designer), an appropriate failure handling
routine is called.

Normal I/O Finish is called for successful I/O completions. This
routine marks the buffer complete, informs BOSS of the I/O completion
event, purges the request from the queue, and makes the channel, bus, and
device available for further use. It must also handle retry operations which
require an additional operation to be performed on the device; i. e., back-
spacing a magnetic tape before retrying.

The Retry routine handles error conditions. It first checks the device
to determine whether a special retry routine applies. If there is one it is
called. Such a special routine may specify another operation needed to clear
or reset the device. If so, the old operation must be remembered and a flag
set so that special handling may be provided.

Select Alternate is the routine for handling device failures. Its primary
goal is to select an alternate device according to the Physical I/O Device Table
and to retry the failing operation on the new device. If there are no alternate
devices, the request is purged, the buffer is marked in error, and BOSS is
signalled to indicate the I/O completion event of the request. Finally, the
device is marked failed and the bus and channel marked available.

BOSS Routines

The Open routine allocates the logical device to the file via the Logical
I/O Device Table. It allocates space for buffers. If the file is opened for
input, the buffers are primed by queuing an input request for each.

The Close routine deallocates the logical device, cancels any outstanding
requests, and deallocates the buffer space.

The BOSS I/O routine places BOSS I/O requests in the I/O Request
Queue. This routine is similar to the CPE routine which performs the same
function.

3.4.4 Service Management

Several user services and some services needed for scheduling jobs
are implemented through routines residing in this layer. Before describing
these functions, a brief overview of simplex/duplex memory utilization is
desirable.

3-55

Simplex/Duplex Memory Utilization

In ARMMS hardware, logical pages may be either simplex or duplex.
AGES software further allows any memory page to be either pageable or

locked.

The pages used for ACES main memory must be duplex and locked.
The pages used for application programs are configured to fit the needs of

the jobs using them.

Only read-only information (constants and the code for non-self-modify-
ing programs) should reside in simplex memory. This information can always
be reloaded to its original state so it is not necessary to keep duplicated copies
of it in main memory. If a task is to continue operating through memory
failures, its variable data must be in duplex memory. For a critical task
it may also be desirable for its non-variable data to be stored in duplex
modules. This will provide somewhat higher fault coverage, and will allow
the task to resume operation more quickly after a memory failure. Reloading
a simplex module requires access to bulk memory, whereas duplicating the
contents of the surviving module of a duplex page requires access to main
memory only.

Memory used for I/O buffers must always be locked, for paging activity
could seriously interfere with operation of the I/O system. It is also desirable
for I/O buffers to reside in duplex memory. In some circumstances it may be
impossible to recover lost I/O data which was in a failing simplex memory.
The Get Main Memory routine currently is expected to obtain working storage
only in a locked duplex area of memory, thus all I/O buffers should be obtained
through this method to be insured of locked and duplex memory.

Direct User Services

The routines in this layer are called by the Request Processor to handle
several ACES user service requests.

o Memory Allocation - Temporary working storage may be obtained
by any task. This working storage is always obtained from avail-
able duplex memory. The allocatable memory area is divided
into variable-size blocks of available and in-use memory. Each
block has a descriptor word denoting its size. All available
blocks are linked together to form a list. When a block is re-
quested, the available list is searched for the first block of
sufficient size. If one is not found, the user is informed. If a
block is found, an in-use block is created from it. If the left
part of the available block is larger than a certain minimum size,
the block forms a new available block.

3-56

When an in-use block is returned to the system by a user, it is

combined with any adjacent available blocks.

o Lock Variables - Predefined sets of contiguous data locations

which must be shared between two or more independent tasks

can be read locked or write locked.

A read-lock, applied to a set of data, prevents any other task

from modifying that data set until the read-lock has been removed.

A write-lock, applied to a set of data, prevents any other task

from reading that data set until the write -lock has been removed.

To accomplish the locking, ACES uses "Lock-Variables". A

Lock-Variable is a memory location that contains lock informa-

tion pertaining to a contiguous set of shared data locations. To

facilitate their use, a hierarchy of Lock-Variables may be defined.

Since lock-variables may have a hierarchy structure, the Lock

Request routine must insure that all lower level variables can be

locked before any lock is actually applied. If no lower levels are

found, or, if found, are of the same type, the lock request is

fulfilled by setting the proper indications and incrementing a lock

count in each lock level below the requesting variable involved in

the lock hierarchy.

If a dissimilar lock is found in the lock search, and the lock re-

quest cannot be fulfilled at this time, the user is informed.

If the user cannot perform any useful function until the Lock-

Variable is unlocked, the task may request to enter the wait

state until the Lock-Variable is unlocked.

To release a locked data set, the user makes an unlock request.

The count of the number of similar locks is decremented by the

unlock routine. If the count reaches zero, indicating the variable

has no further lock requests, it is unlocked. Since a task may be

waiting for a variable to become unlocked, the event of the vari-

able becoming unlocked is denoted. This procedure is followed

until all lower locks in the hierarchy have been processed.

o System Subroutines - In order to prevent re.-entrancy problems

with subroutines shared by different tasks, ACES provides a

locking mechanism for shared subroutines. To call a shared

subroutine, a request must be made to ACES. The System

3-57

Subroutine request service checks the lock on the requested
subroutine. If it is locked, the caller is informed that the sub-
routine is busy. If it is not locked, it is loaded, the user's task
is saved, and the CPE's executing the tasks are provided with
appropriate base/bounds to access the subroutine and allowed
to call it.

On exit, such shared subroutines must request that ACES remove
the lock. When this is performed, the saved user's task is re-
stored in the CPE and allowed to continue.

o Partition Boundary Movement - This service allows the user to
adjust the sizes of partitions to allow for changing job mixes.
The request is performed by changing entries in the Partitions
Allocation Table.

Job Scheduling Services

These routines perform services required internally by ACES.

o Memory Partition Allocation - Jobs are loaded into the four
memory partitions. When a job occupies a partition it must be
allocated, and when it leaves the system, its partition must be
deallocated. At allocation, the Memory Partition Table is marked,
and the logical pages belonging to the partition are marked in the
Logical Address Assignment Table (LAAT) as simplex or duplex,
locked or not locked as determined by the needs of the job. At
deallocation, the partition is marked free and its pages in the
LAAT are marked free so that the physical modules they may
occupy will be freed to the system.

o Job Resource Comparison - This service is used by Job Schedul-
ing to determine whether sufficient resources are available to
run a particular job. Currently, the only resource checked on a
job basis is main memory. A partition of sufficient size must
be available before a job can be run.

3. 4. 5 Time Management

Timer Hardware Review

ARMMS hardware includes two 16-bit timers of 100 us resolution.
One of these, the Real-Time Clock, counts continuously and produces an
interrupt each time it overflows. At each interrupt, a software routine in-
crements a software extension of this counter. Mission time to a resolution

3-58

of 100 ps may be formed by concatenating the software and hardware portions

of the clock.

The other timer is an Interval Timer. It can be set with an initial

value and produces an interrupt when its count becomes zero.

Figure 3-11 depicts a conceptual view of ACES Time Management.

Timer Queue Processing

TQI's awaiting a specific time are placed in a Timer Queue which

is ordered by the requested time. The Timer Queue Processor computes

the interval between present time and the requested time of the first entry

in the queue. If the interval cannot be contained in the 16-bit Interval Timer,

a flag is set for the real-time clock interrupt processor, which will re-

process it when it will fit, otherwise a full value is placed into the Interval

Timer clock.

When the Interval Timer produces an interrupt, the first entry in the

Timer Queue is processed and a check is made to determine if the time request

has expired. If so, the TQI is moved to the Priority Queue. If not, the

interval timer is loaded with the remaining interval (if less than 16-bits) or

with the timer's full value.

User Timer Service

The user may read the Real-Time clock via a request to BOSS. The

Real-Time clock routine reads the clock in mission time and reformats it as

required by the user.

3. 4. 6 Scheduling Management

Several of the scheduling routines fall in this layer. Figure 3-12

depicts a conceptual view of the intertask communication of routines described

herein.

Scheduling Tasks

The main Task Scheduling routine and its two principle subroutines

which perform these functions are located here. For any Task Scheduling

request, a TQI must be built, which requires that a TQI slot in TQM be

obtained. If no slots are available in TQM, the request cannot be handled

and must be rejected. The user is informed when the request cannot be handled.

3-59

Software Clock

100 ju s

Real-Time

Clock Real-Time Clock
Interrupt

Processor verflow 16-Bit

(counts up)

(May be read but
not set)

Timer Queue

TI Timer

Queue Interval Timer

Processor 4 - z ero 16-Bit

(counts down

(May be set but
not read)

Priority Queue

Figure 3-11. ACES Time Processing

Task Schedule
Request

Timer Time Task Priority Priority

Scheduler tScheduler W Scheduler
Request Request

Timer TQI's

Queue

Interval Timer Priority
Timer Queue TQI Execution

Processor QI i Iueue
(Ordered by
priority +
FIFO)

_OExecution
Dispatching

Figure 3-12. Scheduling Tasks

3-61

If any wait conditions are specified, wait items must be built, which requires

space in file memory. Again if no slots are available, the request cannot be
handled, and the user must be so notified.

1. Scheduling by Priority

To schedule by priority, the TQI is built; Wait Items, if necessary,
built and enabled; and the TQI entered into the Priority Execution
Queue. This is done quite simply. The priority of the task is
examined, the search macro-instruction is. invoked to scan for the
first entry in the queue with lower priority, and the insert macro-
instruction is invoked to insert the new TQI before the one found by
the search.

2. Scheduling by Time

To schedule a task based on time, the TQI is built, any Wait Items
built.and disabled, and the TQI is entered in the proper place in the
Timer Queue, which is ordered by time. If it turns out to be the
first item in the queue, the Interval Timer must be reset to time
the interval until time to handle this new first item. At the appro-
priate time, the TQI will be moved from the Timer Queue to the
Priority Queue and its Wait Items (if any) enabled.

Task Wait Call

This user service routine stops a task, sets its wait bit, and initializes
the Wait Items needed to make the user's task wait as requested. If there
is insufficient file memory for the Wait Items, the request cannot be accepted
and the user is so informed. Wait and Event processing is described more
fully in Section 3. 3. 7.

3.4. 7 Event Management

The ACES Event Processing system is used to control the execution
of tasks based on events. Figure 3-13 presents a conceptual view of the
Event Management performed by ACES.

Event Definition

An event is any occurrence which is known to ACES. Examples of
events which have been defined to date include:

o Task Termination

3-62

Request > Alert

Alert List

Event -I '
Processor

SWait Item List

Request Wait Call

-o Processor

Control Data Flow

Figure 3-13. Event Management Overview

3-63

o Logical Page Available

o Variable Unlocked

o I/O Complete

Others may be defined for a particular application.

An event may be considered as a pulse. As an operating system ACES
makes no attempt to remember, within itself, each event's status; ACES
only responds to each occurrence of an event at the time event notification
is made to ACES. However, ACES provides the user with a means of recording
the status and count of event occurrences by a mechanism called Alerts.

Wait Items

A Wait Item:is an entity created by ACES in response to a Wait Call
request or a Task Schedule request specifying event names to be waited upon.
The purpose of a Wait Item is to monitor a single event and to identify a task
whose execution awaits that event. A single task may have more than one
Wait Item and a single event may be monitored by more than one Wait Item.
Sometimes (when both time and Wait Items are specified) Wait Items are
created before the time when it is desired that they begin monitoring their
events. In this case, they are built normally but they are disabled so that
the Event Processor will ignore them until the time requirement has expired.

The TQI contains a counter which identifies the number of events that
must be satisfied before the task may be reactivated. Each time an event
occurs for which a TQI is waiting, and the event has not been previously noted
by the TQI, the wait counter is decremented. When the counter reaches zero,
all the TQI's Wait Items are deleted and the "wait state" status removed.

Alerts

An Alert is an entity created by ACES at the request of the user. Its
purpose is to monitor a single event and to remember and count the occurrences
of that event. An Alert may be substituted for an event name in any Task
Schedule request or Wait Call. By controlling the time at which an Alert is
created, the user may impose a wide variety of time constraints on the moni-
toring of events for the purposes of scheduling and waiting.

File Memory

Alerts and Wait Items are built in File Memory blocks, and linked
together to form two lists: the Alert list and the Wait Item list. The File
Block Status Matrix records the status (in use or available) of each block in

3-64

File Memory. When new Alerts and Wait Items are created, they are built
from available blocks; when they are deleted, their blocks are returned to

the spare pool.

Processing Events

Some events occur due to conditions detected internally to ACES, such
as File Memory Available, ABEND, etc. Other events are detected or
created by user software in the CPE's or by hardware and software in the

IOP. These events are signalled to ACES through Event Set requests.

When ACES is notified of an event, it processes the event by searching

File Memory. First, the list of Wait Items is searched for enabled Wait

Items referencing the event which has occurred. When such an event is found,

the event threshold count of the TQI it references is decremented by one.
If the count reaches zero, the TQI's wait state is reset and all Wait Items
referencing it deleted from the list. This search continues to the end of the

list.

The Alert list is then searched, and the counts of any Alerts referencing
the event are incremented by one and the event status set to complete (satisfied).

Event Based Scheduling and Waits

The event based processing of tasks for scheduling and for waits is
quite similar. First, the TQI wait bit is set and Wait Items are built for all

events the task is to await. Then time requests are handled. If there is a

time request, the Wait Items are disabled until the requested time arrives.

At that time, any of the Wait Items specifying Alerts will be initialized. The

Alert is examined; if its event has occurred, the TQI's threshold count is

decremented and the Wait Item deleted. Otherwise, the Wait Item is left.
All of the Wait Items are then enabled.

3.4. 8 Task Resource Management

This layer groups together several routines whose functions relate
to management of tasks and their resources.

User Services Provided

o Task Cancel - Cancelling a task removes any pending requests
for its executions and halts rescheduling if the task is periodic.

This function is available as a user service request and also
is used internally by ACES when a job terminates.

3-65

o Task Status - In order for the user to manage his tasks, it is
often necessary to know another task's current status; i.e.,
awaiting an event, executing, pre-empted, etc. This information
is recorded by ACES in the Status field of the TQI. The Task
Status request allows the user to request and receive this
information concerning any TOQI's status.

ACES Task Management Processing

o Task Dictionary Comparison - When units have failed it may
become necessary to reduce the workload of the ARMMS
system. This is done by scanning each job's Task Dictionaries
of Lower Level (DOLLs) to locate one which can be run on the
currently available resources. The Task Dictionary Comparison
routine performs the comparison needed to compare a DOLLs.
needs and the currently available resources.

o Job Task Halt - At job termination, Job-Task Halt is invoked
to apply the Cancel service to all tasks of the job. This begins
the process of allowing the job to come to an orderly and timely
completion.

3.4. 9 Task Dictionary/Task Queue Memory Management

The Task Dictionary and the Task Queue Memory, two of the most
important data structures of the ACES system belong to this layer. Most of
the routines in this layer are devoted to managing these structures and providing
access services to them for routines on other layers.

Task Dictionary Management

By calling upon the Task Dictionary Manager, ACES routines may read
and write entries in the Task Dictionary in a controlled manner.

A caller may request a Task Dictionary entry for any job or job phase
and read all or any part of it. Properly called, the Task Dictionary Manager
will sequentially read entries from a job or job phase and provide an indication
when the end of the job or job phase is reached.

A caller may also write any entry or any part of a Task Dictionary entry.
An update may also be performed in which the environment will be protected
between reading and writing of an entry.

3-66

Task Queue Memory Management

The Task Queue Memory (TQM) consists of many slots each of which

may accommodate one Task Queue Item (TQI). TQM management is concerned

with creating, destroying, reading, and writing of TQI's and linking and de-

linking those TQI's into the Timer Queue and the Priority Execution Queue.

To create a new TQI, an empty TQM slot must be formed and allocated

to it. When TQM is full, the caller must be notified. When a TQI is no longer

needed, its slot must be made available for reuse.

It is possible to read or write all or part of a TQI. TQI's may also

be read sequentially and scanned. TQI's reside in either the Timer Queue

or the Priority Execution Queue. The normal sequential order for reading

them is by their order in these queues. Sequential reads must specify which

of these queues is to be read. The scan feature allows either of these queues

to be searched for a particular TQI.

Since the Timer Queue and the Priority Execution Queue are organized

slightly differently, different routines are provided for linking and delinking

TQI's into the two queues. TQI's in the Timer Queue are ordered by their

time parameters. At any time the Interval Timer contains the interval in

100 ps increments until time to process the first item in the queue. When a

new item is placed in the queue, if it becomes the first (or only) item in the

queue, the Interval Timer must be reset with the new value. The Priority

Execution Queue is ordered by task priority and, within a priority, FIFO.

Task Dispatching

The two initiating routines for task dispatching interact closely with

TQM so they are included at this level to allow them to access TQI ' s directly.

The Dispatcher routine is called to search the Priority Execution Queue

for a task which may be put into execution. The Pre-dispatcher is called to

perform an abbreviated check any time a task is scheduled to determine whether

it is necessary to call the Dispatcher. These routines interact heavily with

routines in the Initiation Management layer (Section 3.4. 10).

3. 4. 10 Initiation Management

The routines described herein, together with the Dispatcher and Pre-

dispatcher described in Section 3. 4. 9 form the dispatching system of ACES.

3-67

Dispatching Overview

The ACES dispatching system is presented with tasks having different
priorities and stream weights. The stream weight of a task is the depth
of redundancy needed by the task (1 for simplex, 2 for duplex, or 3 for TMR).

The Dispatcher has at its disposal up to four identical CPE's. These
may be configured in any combination to form streams of weight 1, 2, or 3.
At any one time up to four simplex, one duplex and two simplex, two duplex,
or one TMR and one simplex streams may be executing. The Dispatcher
selects tasks for execution, selects CPE's to execute them, configures the
CPE's, and starts the tasks. When a task terminates, ABEND's, or goes
into the wait state, it is a function of the dispatching system to stop the
task's execution, return its CPE's, and update all tables accordingly.

Dispatching Tables

The Dispatcher uses several tables to hold information concerning the
TQI's and CPE's it manipulates.

1. Priority Execution Queue - Tasks awaiting execution are kept in the
Priority Execution Queue, or simply Priority Queue. Tasks (TQI's)
are placed in this queue by the Priority Scheduler and remain there
until they terminate, ABEND, wait for a time expiration, or are
cancelled.

This queue of TQI's is in a linked list format. It is ordered by the
priority of the TQI's. When two or more TQI's have the same priority,
they are further ordered on a first-in, first-out (FIFO) basis.

2. Master Execution Table - The Master Execution Table (MET) is of
primary importance in ACES. It identifies each TQI currently in
execution by its TQI number and keeps track of which processor(s)
the task is using. It is also used to identify the active CPE's active
TQI's, etc. The MET is also referenced to identify the requesting
stream whenever a service request interrupt is processed by ACES.

3. AVAIL Word - The AVAIL Word is used to record the available CPE's
and buses. It contains one bit for each CPE and one bit for each bus
in the system. When the CPE or bus is free for use, its bit in the
AVAIL word denotes its availability.

3-68

4. Configuration Resource Requirement Table - This table contains an entry

for each possible combination of CPE's and buses that can be used to

form a stream. Each entry is a word in the same format as the AVAIL

word, each bit indicating a CPE or bus which must be available to

utilize the entry's configuration. It is arranged in three columns, one

each for simplex, duplex, and TMR combinations.

5. Configuration Connect Word Table - This table is arranged in the

same form as the Configuration Resource Requirement Table. For

each Configuration Resource Requirement Table entry, the corresponding

Configuration Connect Word Table entry has the information needed to

"wire" the hardware into the correct configuration.

Operation of the Dispatching System

Figure 3-14 presents a conceptual view of the operation of the

Dispatching system.

1. Task Selection - The first step in dispatching a task is to select from

the Priority Execution Queue the highest priority TQI not in the wait

state for which sufficient resources exist. Sufficient resources exist

for a TQI if either they are already available or they are in use by a

task or tasks of lower priority which may be pre-empted.

The Priority Execution Queue must be searched, beginning with the

highest priority entry and continuing until it is certain that the queues

contains no more dispatchable tasks. Each entry must be examined

for wait state, stream weight, and priority needed to pre-empt another

task.

The SEARCH macro-instruction is used to search the queue for TQI's

of suitable stream weight and not in wait state. This searching is

controlled by the macro's mask.

This mask is initially set to search for a stream weight of three or less.

In other words, initially a search is made only for a TQI not in wait

state. When a likely TQI candidate is found, the SEARCH macro

stops. The found TQI's resource needs are then compared to the

resources currently available (idle). If enough resources are available,

the task is initiated upon them. If enough resources are not available,

a check is made to determine if pre-emption is possible. If so, pre-

emption is performed and the task initiated. If enough available

resources and lower priority tasks do not exist to form a stream of the

proper weight, it is an indication that a stream of this weight cannot

be placed into execution at this time. Therefore, the search mask word

3-69

Priority
Schedule

Task Master
Dispatching Initiation I Execution

Routines Task Table
Deactivation

Priority TQI's
Execution Busy
Queue CPE's

Termination,
ABEND, Task Task

Cancel ush Initiation Deactivation

AVAIL
word (idle
CPE's)

MINPRI
(Minimum
Priority
needed to
preempt)

Figure 3-14. Dispatching Overview

3-70

is set to search for a task of one stream weight less than the current

TQI's stream weight and the SEARCH macro is restarted at the next

TQI in the Priority Queue. The search is discontinued when the end

of the queue is reached or no more resources exist with which dis-

patching can be performed.

2. Pre-emption - Lower priority tasks are frequently pre-empted to

obtain resources to run higher priority tasks. Before pre-emption

of lower priority task(s) is performed, a check is made to determine

if enough lower priority tasks exist to form a suitable stream. If not,

no pre-emption is performed. If enough lower priority streams exist,

they are halted, one by one, starting at the lowest priority task, until

enough streams are available to start the new task.

3. Configuration - A suitable configuration for the task is quickly found

by selecting the column of the Configuration Resource Requirement

Table corresponding to the task's stream weight and searching down

the table. A simple bitwise comparison with the AVAIL word tells
whether an entry is suitable for the available hardware. When an

entry is found, the information in the Configuration Connect Word Table

plus the address of the task's save area is used to form prepare-to-

start commands for each processor in the new stream. These commands

are sent followed by a hardware synchronize start command, and the

processors begin executing the new task in lock step.

4. Task Halt - To stop a task, the task's save area address is sent to each

processor in the stream via the prepare-to-stop command. Then a

hardware synchronize stop command is broadcast to the modules. The

CPE's then proceed in lock step to store the processor's current state

in the task's save area. This proceeds concurrently with BOSS's

housekeeping operations; i.e., adjusting its various tables to reflect

availability of the hardware used by the stream, etc.

3.4. 11 Fault Management

Fault Processing Overview

Faults in the ARMMS system are detected by fault-checking circuitry

in the various hardware modules. Each of these modules is capable of producing

a distinct fault interrupt into the BOSS processor. In addition, the CPE and

IOP hardware is capable of masking many faults. In these maskable fault cases,
instead of interrupting the BOSS processor at the time the maskable fault occurs,
a record of the fault's occurrence is saved in the processor in its Module Status

Word (MSW). Then, when the next normal task service request is presented

3-71

to BOSS, both the task service request and the maskable fault record are
presented. Therefore, it is possible to simultaneously have a failure
indication and a legitimate service request from CPE's and IOP's.

Both the fault indications and the service requests are processed in
BOSS by the ACES Request Processor routine. The Request Processor
routine first examines all incoming requests to determine if faults (mask-
able or non-maskable) have occurred. Two types of faults could have occurred.
The first is due to a logical address not currently active. The second type
occurs if a hardware fault was detected. In the former case the Page Fault
Processor is called and in the latter, the Failure Pre-processor is called.
(By calling these routines before the proper service request routine, a pseudo
higher priority is assigned to fault request over normal service request.)
After calling the Fault Processing routines, or if no fault indications were
present, the normal service request routines are called. Figure 3-15 depicts
the Fault Processing components at a functional level.

o Failure Pre-processor

The Failure Pre-processor, using the Fault Isolator determines which
module or modules are at fault. These modules are then reserved
and a Module Failed Word is built for the Fault Processor which will
perform diagnostics and take appropriate action.

If the failure has not destroyed the integrity of the task, it is allowed
to continue processing. This is achieved by making the task appear
as if it had been pre-empted. If the task's integrity is questionable or
destroyed, its service code is modified to an ABEND request so that
the Request Processor will initiate ABEND processing for the task. If
the failure is found to be in a memory module, the Memory Failure
routine is called to replace the module.

o Fault Processing

The Fault Processor is a key module in the ACES diagnostics system.
It:

1. performs follow-through processing for memory paging,

2. controls the testing of suspected failed modules, and

3. handles the periodic retesting of hardware modules.

The Fault Processor is responsible for follow-through processing for
memory paging. Whenever I/O has begun for a memory page, the

3-72

REQUEST

PROCESSOR

Page Fault Hardware

Indication Failure
dIndication

PAGE FAILURE Various User

FAULT PRE-PROCES- Service Request
SOR Routine s

MEMORY Module
FAILURE ailed Word

FAULT_ I PROCESSOR

PAGER

TESTER

BOSS I/O

Figure 3-15. Fault Processing Components Overview

3-73

Pager routine is called periodically to check for completion of
the I/O operation. If the I/O is complete, that routine performs
paging complete operations.

Suspected failed modules are noted by a Module Fail Word (MFW).
When modules are suspected of having failed, the Fault Processor
first reserves the module for diagnostic purposes, awaits the re-
servation complete, and calls the Tester routine to perform diagnos-
tic testing and replacement, if needed.

Finally, the Fault Processor is responsible for re-testing of hardware
modules. Modules which have failed and been taken out of service
are periodically re-tested to determine if the module has become
functional again. Also, when no other diagnostic activity is present,
the MSW's of all modules are scanned searching for faults which might
go unreported due to a failure of the interrupt system.

o Reservation System

The reservation system consists of two routines in the diagnostic system,
Reservation Call and Reservation Return, and one routine in the
dispatching system, Reservation Checker.

Reservation Call determines if a module to be reserved is failed or
spare. If either of these cases is true the module is immediately
reserved for diagnostic use, otherwise it is added to the reservation
request list.

Each time the dispatching system releases a module to the system, it
calls the Reservation Checker to see if a reservation request has been
made for it. If it has been requested, the module is placed on the
reservation list. When a reservation is active, Fault Processor
periodically determines if the request has been satisfied. If so, the
Tester routine, which has been waiting for the reservation, is called
to perform diagnostics on the module.

When Tester has finished with the module, it calls Reservation Return
which returns the modules to their previous state, failed, spare, or
ope rational.

Paging

ACES employs a paging scheme in its management of memory resources.
Basically, any paging scheme treats memory as two separate address spaces,

3-74

a logical one and a physical one. ARMMS logical address space of 128K words

is divided into 16 pages of 8K words each. Each of these logical pages may

Occupy none, one, or two of the available physical memory modules. Non-

present logical pages are stored on a bulk storage device and do not require
a physical memory module(s). Present logical pages may require one or two

physical memory modules according to the criticality (simplex or duplex)
desired of the pages. When a task attempts to reference a non-present page,

it produces an interrupt into the BOSS processor. ACES then makes that

page available by reading it into main memory from bulk store.

This scheme provides two principle benefits to the ACES system: 1)
A degraded mode of operation is available when failures of physical memory

modules reduce. their number below the number required to house the full

logical address space. 2) The fault processing software may perform

diagnostics on physical memory modules by removing them from their role

as a logical memory.

o 'Page Fault Processing

When a legitimate address is referenced that is not in main memory,
a page fault interrupt is generated into BOSS. In handling this page
fault interrupt, ACES first places the task attempting to address the
non-present logical address into the wait state to await availability
of the page. It must then find a physical module(s) to house the new

page. This module(s) may be found in the spares list or it may be
necessary to roll another logical memory's contents out to bulk storage
in order to obtain its physical module. Once a module is found, the
new page is rolled in from bulk. After the new page is in main
memory, the task may be removed from the wait state by ACES.

Some processes such as I/O and ACES itself cannot tolerate the
delay involved in paging. It is, therefore, necessary to provide a
mechanism for locking logical pages into main memory. After a
logical page is locked into its physical module, it cannot be separated
from that module (except of course if the, or one of the, physical

module(s) fails).

o Memory Failure

When a failure is detected in a memory module, the paging system is
invoked to separate the physical module from its logical page. Once
this has been accomplished, failure handling of the memory module
may proceed the same as for any other module; i. e., diagnostics are
performed to verify the failure, and the module is marked failed or
return to the system depending on the result.

3-75

Functions of System Initialization/Restart

A detailed step by step procedure for system initialization/restart
has not been included herein. This is primarily due to the fact that the final

hardware configuration, with its detailed list of capabilities and restrictions,
has not been completed as of this writing. However, certain tables, data,

etc., in ACES must be reinitialized, regardless of other requirements

the hardware imposes. Therefore, an overall functional guideline is pre-
sented in the following discussion so that the system builder has an initial
feel for the items that must be reinitialized.

It is assumed that hardware will provide a suitable bootstrapping

procedure to configure a workable BOSS processor and ACES main memory
modules and to load those modules with ACES software. To protect the
software from interference, all other modules must be stopped and all

interrupts must be masked. Only then can ACES software take over initial-
ization of the system.

The flushing of active jobs, tasks, etc., is accomplished by clearing
and resetting ACES tables and queues. Table 3-4 details the tables, and the
states to which they must be set for ACES to be reinitialized.

The normal ACES diagnostic facilities are used to locate and establish
a working hardware configuration. This is done by assuming that all modules
are failed and initializing ACES tables so that hardware self-testing will begin
immediately on all modules. As good modules are found, the diagnostic
system will automatically update all operational tables, thus making them
available immediately.

As enough modules become operational, the normal job scheduling
facilities will begin loading jobs from the Job Queue, thus restarting user
operations. As required by the application, ACES restart operation may:

o schedule a special restart job, or

o may flush all outstanding jobs and await manual
intervention, or

o may resume processing by loading the next scheduled
and available job.

After a job has been chosen for execution, ACES restart procedures
will cease and normal processing will begin.

3-76

ACES INITIALIZATION REQUIREMENTS

PURPOSE TABLE INITIALIZATION

Clear active jobs Job Active List Purge
Job Definition File Memory Buffers

Job Pending Queue (if required by application)

Clear active tasks Master Execution Table Purge
Priority Execution List
Queue Block Status Matrix
Task Dictionary
Task Queue Memory

Clear Waits and Alerts File Memory
File Memory Status Matrix

Clear System Services Subroutine Call List

Lock Variable Table Remove any locks

User Dynamic Storage Area Set all available

Clear I/O Operations I/O Priority Queue Purge
I/O Request Queue
DIO Transfer Area

Table 3-4

ACES INITIALIZ ION REQUIREMENTS (continued)

PURPOSE TABLE INITIALIZATION

Clear I/O Operations DIO Lock Remove locks

(continued) I/O Request Lock

I/O Channel Status Table Set all available
I/O Bus Status Table
Physical I/O Device Table
Logical I/O Device Table

Re-establish Control of Memory Module Status Table Initialize ACES' units in
Resources use; other's failed (retest

time = current time)

Logical Address Assignment Table ACES' addresses assigned,
others unassigned

Memory Partition Table Set initial partition boundaries

ACES Dynamic Storage Area Set all available

Unit Status Table All units failed (retest time =
current time)

Initialize Dispatching Available Resource Word Purge

Maximum Available Stream Weight

Minimum Preemption Priority Maximum priority

Reset ACES Functions Interrupt Record Purge

Module Failed Words
Reservation List
Communication Queue Area

Table 3-4 (continued)

3.4. 12 Hardware Management

This layer is the layer which performs basic interfaces between ACES

and the computer hardware. Figure 3-16 depicts an overview of the Hardware

Management processing.

Interrupt Processing

The exact mix of hardware, firmware, and software for interrupt

processing was not completely determined as of this document's writing.

Therefore, the exact detailed functional design for the interrupting logic

is not included herein. However, regardless of the exact hardware/firm-

ware operation, certain functions must be performed in the interrupt processing

logic. It is this logic that is presented here.

The ACES interrupt processing must accept notification of an interrupt

and control its entry into the ACES system for processing. Most interrupts

will cause the Request Processor to be executed to perform the handling

of user service request. In these cases, the interrupt generating module's

Module Status Word (MSW) is obtained and passed to the Request Processor

for further processing.

Timers

In addition to the user's service request interrupts there are two

Real-Time clocks which require frequent interrupt processing. The Interval

Timer interrupt requires that the Timer Queue Processor execute and so

a request is placed in the Special Request Table for its execution. The Real

Time clock overflows are processed in the Interrupt Processor so that the

software clocks can always be as accurate as possible.

BOSS-To-Module Bus Operations

In addition to the interrupt processing which must be performed, several

routines are inclued in this layer to control BOSS communication to the ex-

ternal modules via the BOSS-to-Module bus. This bus transmits data to control

and monitor the configuration of the ARMMS system.

One of the routines which communicates over this bus is the Read

MSW routine. This routine performs the hardware interrogate command to

obtain any module's MSW. Any function of ACES may call this routine to have

an MSW read.

3-79

Interrupts
Module Start/Stop

Interrupt BOSS-to-Module

Processing Communication

Read MSW's

Special Real-Time
Request Request Clock
Processor Table Processing

Figure 3-16. Hardware Management Overview

3-80

In addition, there are routines in this layer which control external

module's "run" mode. That is, one routine, through available hardware
facilities, performs the synchronize stop operation of CPE's and IOP's.

Another routine performs the synchronize start operation. These routines

transmit a "prepare-to-start (stop)" command to every individual processor

in the stream to be started (stopped). Then, one synchronize start (stop)

command is broadcast on the BOSS-to-Module bus. This procedure maintains

lock-step operation for the stream. No other streams are affected by the

broadcast command.

3. 5 ACES Timing and Memory Utilization Estimates

Timing Requirements

The following presents timing requirements, timing estimates and

detailed memory utilization estimates for the ARMMS Control Executive

System (ACES). This data was generated during the detailed design of ACES.

In view of the tendency for software systems to increase in size and com-

plexity during implementation, a conscious effort was made to bias these

estimates somewhat on the pessimistic side.

Early in the ARMMS project, M&S Computing assembled a set of

Mission Analysis Profiles (MAP's) based on existing aerospace programs.

These were used as a basis for estimating timing requirements for ACES.

They guided much of the design of ACES and frequently determined the eventual

structure of the system. Table 3-5 presents estimated timing requirements

used to guide the ACES design.

At least two points need some clarifying comments. The "average

number of ACES requests per task" is assumed to be five. This is determined

by summing the average number of ACES requests per task.

1.0 Wait Request

0. 5 Alert Request

1. 0 Lock Request

1. 0 Unlock Request

0.5 Task Schedule Request

1.0 Terminate Request

5.0 Requests per Task

3-81

ACES TIMING REQUIREMENTS

1. Average task execution time (excluding wait time) 5 milliseconds

2. Average number of tasks executing at any one time 2. 5

3. Average number of waits per task 1

4. Average number of alert requests per task . 5

5. Average number of lock requests per task (one lock
also requires one unlock) 1

6. Average percent of tasks which are periodic 40%

7. Average time between ACES rescheduling a periodic
task 5 milliseconds.

8. Average time between task schedule calls 3. 5 milliseconds

9. Average number of task schedule calls per task
execution .5

10. Average percent of task schedule calls with wait
items associated 30%

11. Average time between task schedule calls with wait
items associated 10 milliseconds

12. Average percent of task schedule calls with time
requirement 5%

13. Average time between task schedule calls with time
requirement 70 milliseconds

14. Average number of ACES requests per task 5

15. Average time between an ACES request per task 1 millisecond

16. Average number of task dispatches per 5 milliseconds 7

17. Average time between dispatches . 7 milliseconds

18. Average time between events . 5 milliseconds

19. Paging rate Faults>Paging> 0
Table 3-5

3-82

The "average number of task dispatches per 5 milliseconds" is assumed to

be seven. Since there is an average of 2.5 tasks executing at a time, each

task's average time is 5 milliseconds and each task issues one wait; there

are 2.5 initial task dispatches and 2. 5 re-start dispatches. This yields

5 dispatches per 5 milliseconds. It is further assumed that an average of 2

other tasks are dispatched during the time period that the tasks are waiting.

This gives a total of 7 dispatches per 5 milliseconds.

One further significant fact can be drawn from Table 3-5. The

average time between ACES performing a function is 200 microseconds.

During a given five millisecond period there are:

7.00 Dispatches

1.25 Alert Request (.5 per task, 2.5 tasks)

5.00 Lock/Unlock Request (2 per task, 2.5 tasks)

1.25 Task Schedule Calls (.5 per task, 2.5 tasks)

14.5

Thus, there are approximately 15 task requests per five millisecond period.

The event rate is one event every .5 milliseconds or 10 events per 5 milli-

seconds. The 15 task requests and 10 events mean that ACES must process

25 functions during a given 5 millisecond period, or one function every 200

microseconds.

Timing Estimates for ACES Dispatcher

As the instruction set for the ARMMS BOSS processor was defined,

portions of ACES were trial-coded in order to evaluate some of the instructions

and to make some estimates of ACES execution speed. As study of Table 3-5

will indicate, the dispatching system is one of the most time -critical portions

of ACES. It is also one of the most complicated. Therefore, it was chosen

for trial coding. The results of this effort are presented in Table 3-6.

These timing estimates were also used in a simulation study conducted

by Computer Sciences Corporation in Huntsville. These studies indicated

that dispatching would utilize approximately 15 percent of available BOSS

time, and that the Dispatcher would perform adequately under the assumed

timing requirements.

3-83

ACES DISPATCHER TIMING ESTIMATES

Timings for Different Queue Structures

Original 16 Priority No 3 Pointer 3 Pointers 3 Pointers Macro-
Design Levels PEQP * Queue 16 Levels No PEQP instruction

Enter item
nto queue 10 20 55 20 30 75 52into queue

Delete item
from queue 5 5 5 10 10 10 5

Search for
dispatchable
task 700 260 195 833 115 75 54

Total 715 285 255 863 155 150 111

* - See Task IV Report, M&S document 72-0027
:: - PEQP = Priority Execution Queue Pointers

Timing for Complete Dispatchers Using Macro-Instruction

Routine Time/dispatch
Dispatcher 53.8 microseconds
Starttask 23. 7 microseconds
Configurator 59. 2 microseconds
Tableupdate 14.4 microseconds

151. 1 microseconds

Table 3-6

Memory Requirements Estimates

Memory requirements were estimated for each routine (instructions)
and table (data). Table 3-7 presents an overview of ACES memory utilization

estimates. It shows the program and table memory estimates for each layer

of the system. The data requirement of 5, 960 words is greater than the
program requirement of 4,905 words. In most operating systems data
requirement far exceed program requirements. The 10, 865 32-bit words
insure that ACES will fit:into 2 8K 32-bit word memory modules.

3. 6 Design Verification

From:the inception of any software system, the system designer
must be constantly aware of means of verifying the completed software design.
This is especially true of a spaceborne operating system such as the ARMMS

Control Executive System (ACES). Design verification for ACES has been

of the utmost importance throughout the entire ACES design effort and, for

this reason, it is felt that ACES will be relatively easy to verify.

The following presents the means by which AGES should be verified.

The subject matter is presented as a guide to help a future design verification

effort flow smoothly and meaningfully.

Verification Definition

The design verification stage of a system development effort should

perform three separate functions:

o Verify completeness

o Verify logic

o Project performance

Verifying a system's completeness is the first function of a design

verification procedure. Verifying completeness involves insuring all necessary
functions of the system are performed; i.e., all necessary software modules

are present.

Verifying logic is concerned with the process of insuring those modules

which are present are functioning properly. In other words, this step con-
firms the integrity of the system by showing that the system's software logic
as presented in the design, is correct.

3-85

ACES MEMORY REQUIREMENT SUMMARY

Layer Summary Program Memory Table Memory Total Memory
Requirement Requirement Requirement

10. Request Management 100 110 210

9. Job Management 637 507 1144

8. I/O Management 926 76 1002

7. Service Management 705 618 1323

6. Time Management 65 0 65

5. Scheduling Management 355 0 355

00
4. Event Management 492 766 1258

3. Task Resource Management 140 29 169

2. Task Dictionary - Task 550 3517 4067
Queue Memory

1A. Initiation Management 265 247 512

lB. Diagnostic Management 500 90 590

0. Interrupt Management 170 0 170

Total 4905 5960 10865

Table 3-7

Performance evaluation should be performed early in every system

design. If performance standards cannot be attained, then time remains to

change the design. Performance data must be projected with some degree

of confidence for the system design to continue to the next step.

However, projecting performance is perhaps the most difficult function

to perform in the design verification effort. This is primarily due to the

latitude that can be experienced in obtaining performance data for a designed

system. In addition, when the target computer is not yet built or readily

available at this stage, as in the case in ARMMS, the problem is further

complicated.

Means of Verification

At least three approaches for performing the above should be evaluated

for each major area of the executive:

o Sample coding

o Testbed implementation

o Simulation

Sample coding of a software component involves partially or completely

coding the component. The coding should be performed utilizing the instructions

available for the target computer. A sample coded program may use the entire

instruction set of a machine, permitting consideration of characteristics that

may be unique to the particular machine, such as addressing, special registers,
etc. This can enlighten the system designer as to particular, unique character-

istics that may be more fully, usefully employed throughout the entire system.

In particular, data structures might undergo rigorous revision after sample

coding for more efficient utilization of the instruction set.

Sample coding is best utilized as a design verification tool in the

more simple, straightforward software sections. Here the sample coding is

more efficiently utilized as an economical means of verifying the design.

Projected performance can be adequately ascertained with non-complex soft-

ware sections by sample coding. The program timing estimates are based

on the manufacturer's stated execution times for the instructions that com-

prise the software module.

Testbed implementation is the coding and execution of selected portions

of a software design on an actual computer. While more confidence can be

placed in the results if the target computer is utilized, testbedding may be

performed on any computer. For instance, if the target computer is not

3-87

available; e. g., it is currently being designed or manufactured, an alternate
computer may be employed.

Testbedding requires more effort to perform than sample coding.
This, in part, contributes to the higher cost that should be experienced with
its use. However, testbedding is more thorough than sample coding and
more confidence can be placed into the verification process when it is utilized.
Testbedding can be usefully employed to verify completeness, verify logic,
and project performance of software systems. It is generally employed in
the more sophisticated systems where sample coding is not sufficient to
verify the design.

Simulation provides a testing ground for and insight into the functioning
of a system and is, therefore, the most potentially powerful and flexible of
the design verification techniques discussed heretofore. However, the greatest
drawback of simulators is their relatively high cost.

The level of simulation to be performed is a difficult design decision.
If the level of detail in the simulation is too fine, the simulator may be too
expensive to use and too much machine time or capacity may be required. If
the level of detail is too gross, the results may be misleading because impor-
tant details may be aggregated to such an extent that their impact is lost.

Simulation provides excellent results for design verification of a
new machine and software system, but the effort and cost of preparing the
simulator for the full versions is usually prohibitive. Thus, for these reasons,
it is usually limited to projecting performance of critical areas.

Design Verification Recommendations

The following presents the recommended approaches for verifying the
different portions of the ARMMS Control Executive System. Figure 3-17
summarizes the approaches discussed herein.

I. Job Control

In the ARMMS system, a job is the highest user entity processed by
ACES. A job is composed of one or more tasks which perform different, but
related functions. For instance, in the space environment for which ARMMS
is designed, one job might be for vehicle control, one for a life support system,
while another would be for performing experiments. The vehicle control job-
might contain such tasks as navigation, guidance, minor loop, minor loop
support, and switch selector processing.

3-88

FIGURE 3-17 ACES DESIGN VERIFICATION MEANS

Executive Executive Expected

Complete Correct Performance

JOB CONTROL Testbed Testbed Simulation

(Job Schedule, Job Terminate,
Job Cancel, Job Phase Load).

TASK CONTROL Testbed Testbed Simulation

(Task Schedule, Task Terminate

Task Cancel, Task Status, ABEND).

EVENT PROCESSING Sample Code Testbed Testbed
Extraction

(WAIT, ALERT, EVENT).

I/O PROCESSING Testbed Testbed Testbed
Extraction

(File and Data Manipulation).

RESOURCE CONTROL Sample Code Testbed Testbed

Extraction

(Main Memory, Information

Protection, System Subroutine,

Time).

3-89

ACES job control is responsible for handling four areas:

o Job schedule,

O Job terminate,

o Job cancel, and

o Job phase load.

These areas comprise the operating system's job control processing.

Job control is one of the most difficult areas to verify in the ACES
design. Although it is large, job control and task control together probably
make up half of the entire ACES system for it is a very sophisticated system.
Job control is a complex section whose design is ingrained in several different
ACES "layers". Since the job control section is sophisticated, testbedding
is recommended in order to insure that the executive is complete and correct.

To verify that the executive is complete, the job control section
could be testbedded ona single processing system. However, to verify that
the executive is correct, the section should be executed on a multiprocessor
system. The multiprocessing system for insuring that the executive is
correct is not an absolute requirement, but due to its sophisticated nature
and its inter-relationship with multiprocessing, more confidence could be
placed into the results if a multiprocessing system was utilized.

The multiprocessor capability would allow the ACES job control
section to be executing by one processor while other processors could,
simultaneously, be executing simulated tasks which make requests of job
control. This would yield an environment similar to the ARMMS system where
at any one time up to four processors could be making a request of job control.

At least two computer systems, located in Astrionics, lend themselves
for this testbed function: the SEL 840/MP and the ARMMS Breadboard. The
SEL 840/MP has three processors available. This would allow job control
to be executing on one of these with the other two processors executing
simulated tasks. This would permit sufficient testing to insure that the design
logic is correct. If scheduling permits the ARMIVMIS Breadboard to be
assembled before design verification is complete, then that breadboard is
a logical choice for verifying the design. The multiprocessing could be
performed in the eventual target state of ARMMS, with BOSS and at least
two CPE's.

3-90

Due to the extremely sophisticated nature of the job control section,
performance can only be projected with some degree of confidence by simula-

tion. Although simulation is costly, reliable estimates for such a complex
system are probably only attainable via simulation. Testbed extraction is
not an extremely accurate tool with a sophisticated system, especially one

testbedded on a multiprocessor system.

2. Task Control

The ACES operating system is intended primarily to provide a
reliable environment for real-time jobs. Since such jobs are generally

composed of many independent tasks, considerable effort has been expended

to provide a powerful, convenient system for managing such tasks. The
system provides a scheduling facility which, coupled with ACES' unique
dispatcher, allows the application designer to make effective use of the
redundant and parallel capabilities of ARMMS hardware. Task control con-
sists of the algorithms required to schedule, dispatch, initiate, and terminate

application program tasks.

To control these facilities, ACES responds to several requests:

o Task schedule,

o Task terminate,

o Abnormal end,

o Task cancel, and

o Task status.

The task control, like job control, section of ACES is a large and very
sophisticated section. Task control is a function ingrained into several "layers"
of ACES and is therefore probably the most complex portion of ACES, even
more so than job control. In fact, it is the very heart of ACES with various
other sections surrounding and supporting it.

Since task control is so complex, it is necessary to verify completeness
and correctness by testbedding. To verify completeness, task control could be
testbedded on a single processing system. However, to verify the logic's
integrity, the section should be executed on a multiprocessing system. The
multiprocessing system for testbedding the correctness of task control is
essential. In reality, in the ARMMS system up to four processors could all at
one time be making a request of task control. To insure that the sophisticated
algorithms utilized are valid, a similar environment must be available during

3-91

design verification. The multiprocessor testbed would allow ACES task control
to be executing simulated tasks which periodically and randomly make requests.

At least two computer systems lend themselves for this testbed
function: SEL 840/MP and the ARMMS Breadboard. The SEL 840/MP has
three processors available. This would allow task control to be executing
on one of the processors with the other two processors executing simulated
tasks. This would permit sufficient testing to insure the design logic is
correct. If scheduling permits the ARMMS Breadboard to be assembled
before design verification is complete, then that breadboard is a logical choice
for verifying the design. The multiprocessing could be performed in the
eventual target state of ARMMS with BOSS and at least two CPE's.

Due to the extremely sophisticated nature of the task control section,
performance can only be projected with some degree of confidence by simu-
lation.

Testbed extraction is not accurate when a multiprocessor is utilized.
While it is realized that simulation is costly, it is felt that reliable estimates
of projected performance can only be attained for such a complex system by
this means. Thus, simulation should be utilized for predicting expected
performance for the task control section.

3. Event Processing

Event processing consists of those algorithms and design concepts
required to allow application program tasks to notify the ACES of a need to
monitor and record particular event histories. It also consists of those al-
gorithms which allow the ACES to initiate certain application or system tasks
in response to defined event occurrences. Typical events are specific I/O
occurrences, the setting of intertask program flags, a particular task
terminating, etc.

The ACES event processing system is a non-complicated system.
Event processing from one operating system to another does not vary a great
deal. Thus, this system over many years has been simplified very much.

Since the system is fairly simple and straightforward, it is a fairly
easy task to insure that it is complete by sample coding selected portions of
the system. Sample coding is an economical, yet adequate, means of verifying
that this section is complete.

To insure that the event processing logic is sound, the section should
be testbedded. This testbed operation can be performed on a single processing
system with reliable results. This is primarily due to the mechanism, or

3-92

algorithm, used to process the events. This algorithm completely processes

a single event before another event can be accepted for processing. Thus,

even in a multiprocessing environment, events get single processing treatment.

The expected performance of the event processing system can be

adequately determined by testbed extraction. By timing the testbed operation

and multiplying by a conversion timing (from the utilized computer to the

target computer), fairly adequate performance projection could be obtained.

This is again primarily due to the single event processing algorithm employed

by ACES. The SIGMA 5 or the SEL 840 could very well be employed as a

testbed computer for event processing.

4. I/O Processing

AGES contains a sophisticated, yet simple I/O processing system.

This system is responsible for handling file and data manipulations between

the processing elements within ARMMS and external peripheral equipment.

The ACES I/O system provides two distinct I/O facilities; first, a simple,

streamlined access scheme to perform I/O to real-time devices requiring

only a few words of data; secondly, a more complex, multibuffering access

scheme for devices requiring a transfer of many words of data. Additionally,

provisions have been made available for the future addition of a FORTRAN-

type format control system and/or a bulk file management system.

To verify that the I/O system's logic is complete and correct, a

testbed operation is recommended. The system is too complicated for simple

sample coding and not sophisticated enough to require costly simulation.

This testbed operation would not have to be performed on multiprocessing

computing equipment, but could easily be done on a single processing element

machine.

Timing the execution of selected portions of testbed I/O system should

yield some fairly reliable performance projection figures. These timings

should only be concerned with actual system execution time and not with trans-

missional delays as these may vary greatly from one machine configuration

to another.

Likely candidates for this testbed operation are the SIGMA 5 and the

SEL 840/MP.

5. Resource Control

ACES provides the user with various resources needed to execute

application programs. The resources may be called upon by the application

task at any time during execution. Examples of the various resource control

and utility programs provided by ACES are main memory management,

3-93

information protection, system subroutines, and time management.

The ACES programs that exist within ARMMS are fairly small,
uncomplicated resource control programs. These program designs have
been kept as simple as possible during the design effort. For this reason,
sample coding will prove to be an adequate, economical means of showing
that the programs are complete.

To verify the designs are correct, testbed operations should be
performed. These testbed operations should be small enough that each
section (e. g., information protection) within resource control should be
testbedded. This will insure that each independent section design logic
will be verified.

The resource control program is not complicated enough to justify
simulation for projecting performance. In addition, it is felt that testbed
extraction should give fairly accurate performance figures.

These performance figures when transposed to the BOSS computer
should be indicative of the expected performance of this system in ARMMS.

Typical computer systems, which may be applicable for testbedding
resource control, are the SIGMA 5 and SEL 840. These systems should
yield adequate information to determine if the system is complete, correct,
and give some indication of performance to be expected.

3.7 Support Software

The Automatically Reconfigurable Modular Multiprocessor System
(ARMMS), under development at the Astrionics Laboratory of Marshall
Space Flight Center, offers a very flexible computing capability for a variety
of space-oriented applications. To further enhance the capabilities it offers,
and to make it a more cost-effective tool, support programs must be readily
available to the user.

M&S Computing has reviewed support software capabilities and has
established requirements for eight support softwvare packages for ARMMS.
The following documents those requirements.

General Description of Support Software

An effort was undertaken to identify support software packages which
are knownto be useful at existing programming facilities. From that list
were selected the programs which are appropriate to include with the delivery
of ARMMS to a user. The following selection criteria were applied to the

3-94

identified support software packages to arrive at the list of selected packages.

o Must provide programs which are commonly expected by a

user,

o Must provide programs which are cost-effective over manual

operations,

o Must provide programs that are unique to the characteristics

of ARMMS, and

o Must provide programs that are not commonly available on

user's support facility.

In this study, each of the selected support software packages was

reviewed in respect to its applicability to each of the three ARMMS processors

(BOSS, IOP, CPE). This review included categorizing each support software

package as required, desirable, or not required for each of the ARMMS

processors. When a support software package was listed as required or

desired for at least one of the three processors, this report describes the

most pertinent requirements to be considered in developing the package.

Table 3-8 presents the summary of the study. At least six support

software packages will be required for ARMMS' CPE. The other two processors

require less support software.

However, it. is interesting to note that the commonality study shows

that the majority of the support packages could be developed for one processor,

and with only minor or no modifications could be utilized by one or both of

the other processors if desired. This should prove very cost-effective for

NASA.

Currently work is being performed by the Astrionics Laboratory at

Marshall Space Flight Center on the design of support s.oftware packages for

SUMC. All eight of the ARMMS support software packages discussed in this

report are being designed and implemented for SUMC. Some of the SUMC

support software packages are due for release as early as the summer of

1973, while others are not currently planned for release until as late as

winter of 1974. In general, this SUMC support software effort seems adapt-

able to the ARMMS requirement.

The SUMC support packages are being written to execute on almost

any host computer. This is called host independency. A detailed study of

the preferred host computer for each of the ARMMS support software packages

was not performed. However, it is strongly felt that most, if not all, of the

3-95

TABLE 3-8 SUPPORT SOFTWARE PACKAGE SUMMARY

BOSS CPE IOP

Ass embler Required Required Required

Macroprocessor Somewhat Required Not
Desirable Required

Compiler Not Required *Not

Required Required

Link Editor Required Required Desirable

Instruction Not Desirable Not

Simulator Required Required

Auto • Not Somewhat Not

Flowchart Required Desirable Required

Microprogram Required Required Required

Assembler

Microprogram Required Required Required

Simulator

3-96

support software described in this study should also be written host indepen-

dent. This generally implies writing the packages in higher-level languages.

By being host independent, the customer should expect the fastest develop-
ment time possible for the application programs, since the host computer

might be changed (e. g., for compilations) to achieve the minimum turnaround

possible.

Also by making the ARMMS packages host independent, it may be

possible to execute some of the required support packages on ARMMS itself.

For instance, it may be possible to execute the CPE's compiler on the CPE

itself. Since ARMMS is designed for a high computation system it is possible

that faster turnaround could be experienced with the system as a ground-

based system than with other current, conventional batch systems. For

example, three CPE's of an ARMMS configuration may be simultaneously

compiling three separate routines.

Assembler

The assembler is the most basic support software package in use

today. Without an assembler, many programs would have to be written in

binary machine code. For this reason, an assembler is a required support

software component for the CPE, IOP, and BOSS.

Undoubtedly, most of the application programs written for the CPE

will be written in higher level languages. However, almost always where

these languages are employed in a real time environment, some subroutines,
segments, etc., must be written in assembly language in order to achieve

required time responses. For this reason the CPE will require an assembler.

BOSS is the most time critical portion of ARMMS. Thus, a highly

efficient design of ACES has been attempted. This includes a great deal of

effort being applied to designing BOSS/ACES unique microinstructions. It is

anticipated that ACES will be written in assembly language to take full advantage
of these instructions. Also, ACES is a relatively static program which would

require a new, unique compiler. A compiler unique to BOSS would not be

cost-effective. Therefore, a BOSS assembler will be required.

Several of the ACES routines will be resident in the IOP. In order

to meet stringent time responses, it is expected that all of these routines will

be written in assembly language. This requires an IOP assembler as part

of the support software needed for ARMMS.

Currently, the ARMMS system contains three distinct processors

(BOSS, CPE, IOP), each with its own distinct characteristics. However,
an attempt is being made to impose a similar (although not identical) instruction

3-97

set upon all of them. This similarity is primarily in the instruction format.
It is believed that with this similarity it is very probable that one common
assembler can be developed so that it will assemble programs for any of
the three ARMMS computers. A special control command could be input to
the assembler specifying for which target computer is the assembly. By
this means the assembler could intialize itself to the proper instruction set
to be utilized.

Macroprocessor

As a support software package for ARMMS, the macroprocessor spans
the full range of applicability from required to not required; while the package
is not required for the IOP, it is desirable for BOSS, and mandatory for the
CPE.

There are currently only a few IOP routines. These routines are
relatively small in size. It is for this reason that a macroprocessor for
the IOP is not required. There is insufficient code in the IOP to properly
justify the inclusion of one in the IOP assembler. Even if one were provided
for the current IOP routines, the number of times macro-instructions might
be used would probably be few. Thus, it is not economically feasible to
include one which requires any extra work in the assembler development
effort.

The BOSS encompasses a somewhat larger number of routines than
the IOP. These routines will be written in assembly language and could make
good use of a macroprocessor if one was available. For instance, the entry/
exit mechanism for ACES routines will probably require several instructions
to implement. The macro-instruction capability would provide a convenient
means of coding this entry/exit mechanism for each routine.

Therefore, while the macroprocessor for BOSS is desirable and could
save some development cost, it is not an absolutely required support software
package.

The CPE will house many thousand user routines during a mission.
From mission to mission, these routines generally will experience a good
deal of modification. For large, ongoing development efforts which include
a fair amount of assembly language routines, the macroprocessor can save a
great deal of development time by lower coding, checkout time. This service
in itself makes a macroprocessor a requirement.

Also, whenever a large number of programmers are involved in a
development effort, standardized procedures, such as the macroprocessor
efforts, are extremely cost effective. Therefore, a macroprocessor is a
required support software package for the ARMMS CPE.

3-98

All three ARMMS processors require an assembler. It was pointed

out earlier in this document that it is possible to develop one assembler

for all three processors and just change the instruction set according to

the processor to be executing the code. With this in mind, it is felt that

the macroprocessor can be also developed for the one assembler and be

shared by all three processors.

Compiler

Traditionally higher-level languages afford faster coding and checkout

at the expense of somewhat more inefficient code. Most compilers are only

cost-efficient if they must be developed for a project, if the project is suffi-

ciently large. For these reasons, a compiler will not be required for the

IOP and BOSS, but will be required for the CPE.

The IOP will execute only a few ACES routines with each routine

having stringent time response requirements. For this reason, all of the

routines in the IOP will be written in assembly language. This means a

compiler is not a required support software package for this ARMMS processor.

ACES is a relatively small, static program which would require a

totally unique compiler if one is developed. The effort that would be required

to develop the compiler would not be worth while for as small an effort as

ACES.

Also, several unique microinstructions have been developed for BOSS

to increase time responses needed in certain critical ACES areas. To take

full advantage of these instructions, it is anticipated that ACES will be entirely

written in assembly language. Thus, a compiler for BOSS will not be required

as a support software package for ARMMS.

There will be literally "thousands" of CPE routines per mission.

Most of these routines will be modified or completely rewritten for each

mission. A compiler is ideally suited for a large programming effort where

some code inefficiencies can be tolerated in order to gain increased coding

and checkout time. Therefore, a compiler (or compilers) is a required

support package for the ARMMS CPE.

The total commonality question for a compiler for the three ARMMS

processors is almost purely theoretical. Even if a compiler was developed

for the CPE which could be used by the IOP and for BOSS, it probably would

not be used due to inefficiencies, even if slight, of the code produced.

It is doubtful that an excessively large portion of a CPE compiler could

be utilized in the makeup of a BOSS or IOP compiler. The specialized micro-

instructions of the BOSS and IOP would be difficult to implement within a

3-99

generalized CPE compiler framework.

Perhaps in the compiler framework "commonality" might be more
applicable to the discussion of various SUMC's as being used for the ARMMS
CPE's. With differing mission requirements for ARMMS, differing models
of SUMC may be utilized. These differing models have differing word lengths,
etc. It is plausible in this case that a common compiler for FORTRAN,
say, be developed that generates code to the assembly language level only.
The corresponding SUMC assembler would then be responsible for producing
the machine code corresponding to the specified target computer. In this
case one compiler may be common enough to satisfy all requirements.

Linkage Editor

The linkage editor allows the user to write separately assembled and/or
compiled routines which can be combined to form one program, task, or job.
It is responsible for "plugging" each separately assembled/compiled module
together and resolving the cross references. A linkage editor is a required
software package for the CPE and BOSS, and desirable for the IOP.

The ARMMS application software will probably be a combination of
assembly language and higher level language routines of which several will be
required to form a job. These routines will be designed and coded separately
from other routines within the job. For these reasons, a linkage editor will
be required to combine all routines within a job into one loadable unit.

Currently, there are approximately one hundred ACES routines which
execute within BOSS. While they probably are all written in a common language
(most likely, assembly), each will be designed and coded as a separate routine.
Before executing in BOSS, however, they will all be required to be combined
into one unit to be a linkage editor. Thus, the linkage editor support software
package will be required for BOSS.

Only a few routines execute within the IOP's and each is small in size.
Currently, there are no more than seven IOP routines and the combined memory
requirement is less than 1K. Since the number and size of these routines are
manageable, a linkage editor is not absolutely required for the IOP. It is
possible to assemble each of these routines together as one large assembly.
It would be the assembler's responsibility then to resolve all cross-references,
etc. Since the output of the assembler is in the same format as the linkage
editor, the loader should be capable of loading a module from either.

While it is not required, a linkage editor would be desirable, however.
The capability to assemble each routine independently of other routines is
always helpful during a debug effort. It increases checkout efficiency by not

3-100

requiring all routines to be reassembled when only one routine needs updating.

It is for this reason that a linkage editor is desirable for the IOP. In fact,

if a linkage editor for BOSS or CPE is easily modifiable so it can handle the

IOP routines, it may be well worth this effort; otherwise, a new linkage
editor just for an IOP may not be cost effective.

The CPE, BOSS, and IOP routines all share common memory facilities.

It is desirable, and currently planned, that all three processors share a

similar instruction set and addressing scheme. These things combined with the

recommendation above that the linkage editor be oriented to binary bit streams

rather than consecutive fixed length words, give good reasonto believe it is

highly possible and extremely desirable that one linkage editor be developed

for allthree processors. Developing one package would yield many advantages

including being highly cost effective, requiring less maintenance, and having

a shorter development time.

Instr uction Simulator

The instruction simulator may not be as important in the ARMMS

environment as in other applications. While an instruction simulator may
be desirable for the CPE's, it is expected that it will not be required for

BOSS and the I/O processors.

The IOP executes only a few routines which require a very small

amount of memory. It is not cost effective to develop an instruction simulator

for such a small number of routines for a computer. The cost to develop
the simulator would be many times over the cost of developing the IOP routines.

NASA plans call for a hardware fabrication of a BOSS early in the

ARMMS breadboard phase. This hardware development precedes any soft-

ware implementation. Since the processor will be developed when software

implementation begins, an instruction simulator is not as important as the

reverse situation where the software must be developed on a non-existent

computer.

Also, the development effort for the ACES routines should not be of

such a large nature as to justify the cost of the simulator. Generally, only

on large development efforts, especially where limited real hardware facilities

exist, can an instruction simulator be cost effective. Moreover, BOSS routines

once developed are reasonably static from mission to mission meaning the

simulator would only be extensively utilized for one development effort.

For these reasons, an instruction simulator is not required for the

BOSS routines.

3-101

In contrast to the IOP and BOSS, the CPE has a requirement for the

development of a sufficiently large number of routines to make the instruction
simulator support package somewhat desirable.

The CPE will execute all of the application's routines. The number of

these routines is expected to be several thousand for each mission. The

large number of routines makes the simulator become useful particularly in

light of the fact that most of the routines must be modified (e. g., guidance)
or completely rewritten (e. g., experiment routines) from mission to mission.

However, the fact that several CPE's should be available for checkout
use by the time the application programs are written, makes the simulator
a luxury item and not an absolute requirement. For these reasons, an
instruction simulator for the CPE is a desirable support software package
for ARMMS.

While the three ARMMS processors have attempted to remain somewhat
similar, they are sufficiently different hardwarewise to believe that an instruc-
tion simulator would find little commonality. For example, BOSS has an
elaborate interrupt structure, while the IOP has a very simple one, and the
CPE has none. Also consider that the CPE is started/stopped by BOSS, while
the IOP is started/stopped by BOSS, and it is also started by a particular
memory access by the CPE and by a particular I/O bus signal. Finally, BOSS
is started/stopped by even more elaborate, complex hardware mechanisms.
It is felt that each processor is sufficiently independent of the other two that

a major redesign for each simulator would have to be performed. A simulator
designed for the CPE could not be easily converted to a BOSS instruction
simulator.

Automated Flowcharting System

Automated flowchart generators are the most valuable when programs
are updated frequently. In such cases, up-to-date program documentation
is readily available almost automatically. In relatively static programs the
flowcharter serves relatively little usefulness, and in effect, "may be more

trouble than it's worth". Therefore, in a system like BOSS or the IOP, a
flowcharter is not required, while the CPE user may find it somewhat more
desirable.

The IOP has too few routines which are static to require, or even
desire, an automatic flowchart system. Therefore, an automatic flowcharter
is not a required software support package for ARMMS.

3-102

The BOSS routines, once developed, are seldom altered. Therefore,

the automatic flowchart system would not reach its full potential for this

computer system. It is therefore reasoned that an automatic flowchart

system is not a required support software package for BOSS.

Of all the ARMMS processors, the automatic flowchart system attains

its most usefulness in the CPE. The application programs (executed in the

CPE) will require many modifications from mission to mission and in general,

the program logic is rather complex. An automatic flowcharter should pro-
duce some efficiencies for the documentation portion of each application effort.

These efficiencies are not so great as to make the flowcharter a requirement,
but might make it somewhat desirable. This discussion is further amplified

later in this section.

The flowcharter chosen for the CPE should easily be converted to be
.utilized for BOSS and the IOP. The basic difference would be the introduction

of the different instruction set if the flowcharter is either the syntax analyzer
flowchart or chart code flowchart program type (see below). This should be a

relatively simple modification. If the special language flowchart program is

utilized, no modification whatever would be required as this type of flowcharter
does not scan the source deck to generate the flow. In either case, it appears

that one automatic flowchart system should be capable of functioning for all

three systems with significant impacts.

Microprogram Assembler

The three microprogrammed ARMMS processors together will probably
house over 175 software instructions requiring the coding of approximately 600
microinstructions.

The high frequency of execution of these microinstructions and the

limited amount of microcode storage demand that this code be highly efficient.

The unique nature of the ARMMS system and the difficult problems it addresses

imply a relatively high probability that changes may need to be incorporated
even fairly late in the design cycle.

A flexible and powerful microprogram assembler will be a required

tool for all ARMMS processors to conserve programming effort while meeting
these goals.

The current BOSS instruction set will require approximately 75 micro-

instruction-execution routines plus several hardware interface routines to

handle instruction fetch, interrupts, timers, etc. This is expected to require

slightly over ZOO microinstructions to implement.

3-103

As implementation progresses and experience is gained with the system,
it is very likely that desirable modifications to the highly specialized instruc-
tions in the BOSS processor will be identified. A flexible micro-assembler
will provide a means for incorporating such changes quickly and easily and
without introducing errors in the recording process.

The BOSS and CPE processors share many hardware features in
common. Many of the instructions will probably be identical in the two
processors. The CPE will probably house approximately the same number
of microinstructions as BOSS. Thus, to insure efficiency in code and to con-
serve implementation time, a CPE micro-assembler will be a required
support software package for the CPE.

The IOP is as yet undefined, but is expected to have a somewhat
smaller instruction set than either BOSS or the CPE. It will, however, need
more microcode to handle the special hardware features supporting the
IOP's special role. Coding and debugging this code will require a micro-
assembler.

There is a great deal of commonality in the hardware of the three
processors. The more this commonality can apply to the firmware, the easier
the coding task will be and the fewer will be the sources of errors.

It should not be difficult to define a common assembly input format
for all three processors. For those features which they share in common,
they can also share common syntax and semantics.

There are many instructions common to BOSS and the CPE. As the
IOP is designed, some of these instructions will be included. A properly
designed micro-assembler could allow the same source code to be used for
the same instruction in all processors. By exercising care in setting up
fields and defaults, the assembler could assemble identical source state-
ments to form properly coded micro-code for any of the machines so long as
only common features (such as ACU and SPM) were used. The assembler
should easily identify attempts to use features not present on the target pro-
cessor.

Since the microprogram word formats are not identical, the code -
generation parts of the assembler may need to be somewhat different. How-
ever, it is possible to write such routines that are largely table driven, in
which case to change from one processor to another all that would be required
is to load another table.

3-104

Parts of the input recognition phase of the assembler cannot be

common. This includes those items referring to hardware features which
are unique to a particular processor. Most error detection in this phase,

however, can be common with the exception for the attempted use of features

not present in the target processor.

To summarize, it seems quite feasible to implement a single micro-

assembler which processes micro-code for all three ARMMS processors.

Microinstruction Simulator

Due to its intimate interaction with the hardware, timing, and other

constraints, micro-code is notoriously difficult to debug on the actual target

computer hardware. The complexity of the microinstructions and the

requirements for extremely tight coding pose just some of the difficulties.

Since the microprograms exercise and depend on the operation of every

register and feature-of the machine, it is potentially necessary to examine

all these registers to follow microinstruction execution and locate errors.

This is difficult to provide in actual hardware, specially in small, pin-limited

processors such as ARMMS utilizes.

Finally, it is impossible to operate the processors until the micro-

code works. Unless a simulator is provided, it will be impossible even to

check out the hardware until after the micro-code has been debugged. Thus,
one of the greatest advantages of a simulator will be the capability to separate

debugging of firmware from hardware checkout. For these reasons, a micro-

instruction simulator will be required for the CPE, IOP, and BOSS.

By having a microinstruction simulator for BOSS, its firmware check-

out can be proceeding in parallel with hardware implementation and checkout.

This will reduce the time required on the hardware to checkout the firmware,

reducing lead time constraints.

With the number of microinstructions to be implemented in BOSS,
it is more cost effective to utilize a simulator. This is due to the fact that

the simulator can be executed on host computers in a batch, perhaps multi-

programming, environment. When new hardware is being produced, usually

only a limited amount of it is available for firmware checkout. This reduces

the checkout t6 a sequential process.

The CPE will house approximately the same number of instructions

as BOSS. For the reasons explained for BOSS, the CPE, in like manner,
will also require a microinstruction simulator as a software support package.

3-105

While the IOP will probably house considerably fewer microinstructions

than BOSS or the CPE, it will be the processor which must be checked out

first. The IOP is the link between BOSS, memory, and the CPE to the out-

side world. For this reason, the IOP will be checked out before BOSS or

CPE. Therefore, to facilitate this checkout in an efficient manner, a micro-

instruction simulator will be a required software support package for the IOP.

Although many features differ, there is a great deal of commonality

in the three ARMMS processors since the basic cycle of processors is very
similar.

The simulator itself will probably be different for all three processors,

but its logic flow can be expected to be very similar for all three. It appears

that the input to the simulator can be identical for all three processors.

Internal error checking will differ somewhat, but much of it (e. g.,
memory timing constraints) can be identical. The differences will be mostly

due to features present in one processor and not in another.

The output for the IOP will probably need to be formatted quite

differently from that for the CPE and BOSS. Those two processors, however,
will probably be able to share a common output section with only trivial
differences.

It will probably not be feasible to implement a single simulator to

handle all three processors, but the three simulators should have sufficient

commonality among them to share a considerable amount of usable logic.

3-106

SECTION 4

ARMMS HARDWARE DESIGN

This section begins with a summary of ARMMS hardware design tradeoffs
and guiding assumptions made prior to phase III effecting the final ARMMS
register level design. These tradeoffs include choices of operating modes,
executive function location, modular partitioning, memory hierarchy, fault
tolerance approach, and configuration architecture.

ARMMS has an overall reliability goal of 0. 99 probability of successful
operation over a 5 year mission. Register level designs and reliability analyses
based upon these designs identifying potential failure modes and methods for
detecting and/or masking them are given for each ARMMS module in the next
topics of this section. Failure rate estimates are given for each module allow-
ing the computation of the reliability of any desired system configurations,
using the methods of section 6, as requirements for missions to which ARMMS
is potentially applicable become better defined. For example a typical configu-
ration having ten 8192 bit memory modules, five CPE, 4 IOP, and an internally
partitioned BOSS module would have a probability of surviving a 5 year mission
with at least 7 operational memories, 3 operational CPE, 2 operational IOP, and
an operational BOSS of 0. 9976. This illustrates 2 things; first, that some degra-
dation is likely to occur and the design must cope with this gracefully and second
that degradation to a single simplex stream is a pessimistic assumption except
for very small initial configurations. The more likely end point is a system
with perhaps two thirds of its resources still operational. The level of detail
of the module design also permits descriptions of microprogram and scratchpad
memory organizations, integrated circuit partitioning estimates, and proposed
instruction sets.

The final three topics in this section cover tradeoffs requested by MSFC
in order to bring ARMMS closer to the requirements of present SUMC related
programs and known near term missions to which ARMMS is believed to be
applicable. The first describes modifications to SUMC to allow its use as an
ARMMS CPE providing an alternate to the other CPE design included in this
section. The second describes a BOSS-less version of ARMMS aimed at adapt-
ing it to missions that could not afford or justify a full ARMMS system. The
last summarizes the technical aspects of an ARMS (ARMMS with no multiprocess-
ing capabilities) breadboard based on ARMMS design principles modified as
described in these previous two subsections. The breadboard will be imple-
mented at Hughes during 1974.

4.1 Summary of ARMMS Hardware Design Prior to Phase III

Several important trade-offs and guiding assumptions were made during
the first two phases of the ARMMS study which effected the detailed design of
Phase III. These are summarized in this section.

4.1.1 ARMMS Operating Modes

Three basic operating modes exist in ARMMS: TMR in which throughput
capacity is sacrificed to yield highest reliability; simplex in which the converse
tradeoff is made; and duplex which provides a satisfactory compromize between

these two objectives in cases where all errors must be detected but need not be
immediately corrected.

ARMMS modes are characterized as follows: Most faults are detected in

the simplex mode but no processor faults and only a portion of those in the
memory are masked. Duplex operation guarantees that virtually all faults will

be detected avoiding erroneous computations but only those faults also detectable
in simplex can result in masking and replacement of faulty modules with spares.
The masking property means that the computer is able to complete programs
already in progress before switching in a spare just as in the TMR case and that
it can continue to operate in the presence of a maskable fault once available

spares have been exhausted until ARMMS is commanded to change to a configu-
ration requiring fewer active modules. Finally the TMR operation masks virtu-

ally all errors through voting. All modes have distinct characteristics which
distinguish them from one another except in the special case where all modules
internal error detection coverage approaches unity making duplex operation

equivalent to TMR operation in performance. However, unity coverage in the

processor modules results in excessive complexity for these modules in the
ARMMS context and in incompatibility with existing SUMC logic and hence is not
recommended.

Multiprocessing is assumed to be allowed in connection with all of these
modes so long as adequate numbers of operational processors and memories are
available. For a given number of modules of a given type there are a large
number of submodes which could be identified. For example, if 4 processors
are available they could be connected as follows:

1. One TMR machine
2. Two duplex machines
3. Four simplex machines
4. One TMR plus one simplex machine
5. One duplex plus two simplex machines

Larger numbers of processors could allow even wider ranges of configurations.
However, both from the hardware viewpoint of interconnections and the software

viewpoint of configuration control, some limitations must be accepted eliminating
those degrees of flexibility which cannot reasonably be envisioned as require-
ments or those most costly in terms of hardware and software design. Four
processors in use at a time seem to be an optimum maximum number since no
mission requirements for multiple TMR streams have been established and
4 processors allows higher throughput to be achieved by going from TMR to
double duplex operation, or by supporting a simplex mode simultaneously with
a TMR mode. A capability for more than 3 processing streams operating at

4-1

a time has not been clearly established. However, from a reliability standpoint
any processor should be able to perform any role in any submode. For the sub-
modes discussed only four sets of buses between memories and processors are
required keeping intermodule connections and voter/switch complexity within
reasonable limits. Software should be able to support these configurations with-
out excessive complexities or operating delays. It should be noted that additional
processors could be added as spares if desired with the number ultimately
decided on a basis of total hardware and software costs together with reliability
requirements.

4.1.2 Location of ARMMS Executive Functions

Tradeoffs were conducted during phase II concerning the retention of a
dedicated Block Organizer and System Scheduler (BOSS) module in ARMMS vs.
taking a floating executive approach. There are a number of reasons why a
floating executive might be attractive: 1) since all processors can perform
executive functions pooling of spares is made more efficient; 2) one less module
type requires development; 3) if executive software overhead approaches or
exceeds the capacity of a dedicated executive total processing efficiency can be
lower than that of a floating concept since with a floating executive different
processors may in fact simultaneously execute different executive functions.
However the preponderance of evidence in ARMMS has led to the retention of
the dedicated executive approach: 1) the development cost for BOSS is counter-
balanced by a decrease in complexity and reliability required for all other
processors and therefore which approach is more costly is not clearcut, 2) the
problems associated with a processor reassigning its mode roll concurrent with
monitoring all other modules would be difficult to resolve, 3) functions such as
synchronization, power control, disaster restart, and interrupt reception are
not amenable to distribution among processors and might require centralization
in an additional module if they did not reside in a BOSS, 4) simulation efforts
indicate that total executive overhead should be sufficiently low to minimize
queueing inefficiencies at the BOSS interface for the configuration planned for
ARMMS.

A study of BOSS/CPE commonality indicated that CPE floating point and
multiply-divide functions would not be required of BOSS and that BOSS monitor-
ing and control, timer, and interrupt handling functions would not be required in
the CPE. It was concluded that despite their similarity, BOSS and CPE modules
should not be made identical because of the wasted non-common logic involved
(15%), the increased intermodule switch complexity if any module is allowed to
assume either BOSS or CPE status, and the physical problems of inter-connecting
status and control lines between all CPE/BOSS modules in a compact structure.
Further, BOSS should physically be one module with several (probably 4) identi-
cally partitioned parts, any combination of which can be operated in TMR or in
duplex in the event of failure of all but 2 of the parts. This will allow maximum
packaging efficiency on the assumption that each BOSS partition will contain
31 LSICs and BOSS overall may have nearly 300 interconnects to other ARMMS
modules. It is strongly recommended that an effort be made to maximize logic
commonality between BOSS and CPE LSICs to minimize system development
costs.

A study was made of a BOSS-less version of ARMMS during phase III.
Its conclusions were that without a dedicated BOSS module either ARMMS multi-
processing or reconfiguration (simplex, duplex, TMR) requirements would have

4-2

to be dropped and that even then a much simplified "mini-BOSS" core would have

to be retained for functions not amenable to distribution among CPEs as noted
above.

4.1.3 Location of ARMMS Voter/Switches

ARMMS memory and processor modules are connected by means of a

system of buses and voter/switches. During Phase II of ARMMS a study was
made to determine the optimum placement of the voter switches - either as

additional self-contained modules external to the memories and processors or

internal to the memories and processors. The study involved development and

execution of a computer program to determine overall ARMMS reliability over a

wide range of parameters. For the range of configurations, mission durations,
and module failure rates anticipated (i.e., less than 10 - 5 failures/hour), voter

placement has no significant effect on system reliability. Factors favorable to

external voters are 1) a small increase in reliability, 2) a net reduction in hard-

ware for large numbers of memory modules, and 3) increased modularity. The

factors favorable to internal voters are 1) lower system pin counts, 2) elimina-
tion of the external voter module class, 3) reduction in the number of buses,

4) increased bus speed, 5) reduced BOSS complexity, and 6) reduced system
power. The tangible factors favoring internal voters are considered to be more

important than any small reliability loss involved - particularly since numbers of

buses and pins were not reflected in these reliability calculations, the specific
requirement for the marginal added reliability may not exist and moreover the
difference could be removed at the system level through the use of additional
memory or processor modules. Therefore voters located internally to ARMMS
modules at their inputs are recommended.

4.1.4 ARMMS Module Partitioning

A study was made of processor partitioning during phase I in order to
determine if such partitioning was necessary or desirable to achieve ARMMS

system reliability goals. Existing processors such as IBM-MARCS, NASA-

MCB, and JPL-STAR all take a functional approach to partitioning - i. e.,
horizontal partitioning. Raytheon's SERF computer takes a vertical partitioning
approach in addition to horizontal partitioning between control and arithmetic
functions. Both STAR and SERF employ internal redundancy in key portions of
the control logic in addition to partitioning. The MARCs computer contains
3 functional partitions performing functions to be required of the ARMMS proc-
essor, the MCB and SERF contain 2, and the STAR contains 5, however these
computer projects assumed higher component failure rates than does ARMMS
because of their earlier design time frame and hence tend to be overly conserva-
tive for the ARMMS context.

The advantage of vertical over horizontal partitioning is that since all

sub-partitions are identical so as long as any n of them in an n partition module
are operational, a working processor can be configured. If the processor were
functionally partitioned a working processor could not be configured if all of one

type of partition failed even if several of another type remain operational. It
is also more probable that one type will fail before others if they are not identi-
cal since there is bound to be some unbalance in the design.

4-3

The disadvantage of vertical over horizontal partitioning is that in order
to attain identical subpartitions there must be an undesirable repetition of con-
trol functions as well as special controls to identify a partition function at any
time. This in turn increases partition logic complexity and computer switching,
and consequently BOSS hardware and software function associated with configura-
tion control.

Internal redundancy can be used to advantage if a particular section of a
module has a higher failure rate than other, or must have a higher reliability
than other sections, or if a section is not amenable to error detection or
correction by other means such as coding.

Consideration was given to functionally partitioning the ARMMS CPE into
2 parts - a control unit and an arithmetic-register unit. However for the com-
plexity and consequent failure rate expected for this module this would not appear
to be necessary to achieve system reliability goals. Instead use of internal
error detecting codes and selective internal redundancy is recommended since
this simplifies the configuration requirements on BOSS since the processor can
be treated as a single unit.

A similar adjustment holds for ARMMS memory modules. Here parti-
tioning could have been introduced into the electronics effecting single bits.
However equivalent reliability enhancement can be achieved through the use of a
single error correcting code, again without increasing BOSS configuration con-
trol requirements.

4.1.5 ARMMS Memory Hierarchy

Although the trend today is toward increasingly sophisticated memory
hierarchies for high performance general purpose computers the weight of the
evidence for ARMMS is in favor of including a small local store scratchpad
memory in each processor such as was done in SUMC rather than the inclusion
of a larger task or cache memory. Task and cache memories are used to allow
faster access to most commonly used data than would be possible with it stored
in main memory, providingatotal speed close to that which could be achieved if
all of memory were high speed. Typical speed ratios used are on the order of
10 to 1 for the two memory types to maximize the performance to cost ratio for
the system. However these objectives are questionable with respect to space-
borne multiprocessors in general and ARMMS in particular for 4 reasons: 1)
there should be no high cost ratio between plated wire and semiconductor mem-
ories (the primary ARMMS candidates) of flight rated quality; 2) the ARMMS
CPE based on SUMC architecture will not exhibit a significant increase in speed
while accessing a semiconductor memory vs. a plated wire memory; 3) ARMMS
high packaging density should minimize propagation delays to and from main
memory; 4) the sheer addition of devices, connections, watts, cubic inches and
failures per hour implied by large cache or task memories is not compatible with
ARMMS reliability objectives. This penalty is particularly large in the case of
a multiprocessor where the ratio of task memories to processors is at least
one-to-one.

A prime source of inefficiency in multiprocessing is contention for main
memory access by the processors. Use of a local store with general registers
allows intermediate operands to be retained internal to the processor. These

4-4

registers can also be used to retain frequently used data if software is written
to take advantage of this. Since a local store will not significantly increase

processor complexity or significantly complicate BOSS handling of interrupts or

processor faults one has been included in the ARMMS CPE.

4. 1.6 ARMMS Fault Tolerance Approach

ARMMS achieves fault tolerance through voting and/or comparing the

outputs of redundant memory and processor modules, the replacement of faulty
modules with spares under control of the BOSS, the use of error detecting and
correcting codes, and the use of selective internal redundancy within modules.

Fault isolation techniques within individual modules are described in the sec-

tions devoted to those modules. A general discussion for the ARMMS system
as a whole follows. (See Figure 1.)

During the ARMMS study trade-offs were conducted between differing

error coding techniques. The two most promising codes considered were the

residue code, which is not destroyed by arithmetic operations but does not cor-

rect errors, and the combination of Hamming plus parity codes which can correct

a single error, protecting against the dominant main memory failure mode, but
are destroyed by arithmetic operations. Both codes can detect multiple errors.

A trade-off must be made between duplication of ALUs to detect their errors in

the simplex mode and providing additional spare memory modules to compensate

for the increased failure rates if no bit errors can be corrected. Since the mem-

ories have higher anticipated failure rates than the processor modules do and,
if a residue code is to be internally generated in each processor and no speed

penalty is to be allowed for this process, at least as much residue coder logic
is required as for duplicating the processor's ALU and comparing outputs while

the Hamming code is comparitively simple to generate, the Hamming code with

duplicated processor ALU's is recommended for use in ARMMS.

Six code bits are required for single-error correction of 32-bit words

using a Hamming code. If an additional overall parity bit is used all odd numbers
of errors will be detected and the combination of these two codes will detect up
to 3 errors and 50% of combinations involving more than 3 errors.

It has been determined that the simplest voter/switch design would pass

data to a code checker and registers in the simplex mode, compare data bit-by-
bit outputting "1" to the code checker and registers in a duplex mode, and vote

on the data in the TMR mode. This requires only one holding register and one

code checker per module. It masks single bit errors in all modes, and "no out-

put" and multiple "Stuck on "O" errors in all but the simplex mode, while detect-

ing single bit, no output, and many multiple bit errors in all modes. In duplex
or TMR operation, if 2 processors both show a data error this places the blame
on the memory. If only one shows an error blame is placed on the processor
showing the error and its output is set identically to "0" for that operation in

which case the memory module's voter/switch will accept the output of the good
module as noted above.

Most error code logic resides in the processor modules. Errors are

detected and corrected at the ALU input and data is encoded at the ALU output.
Error detection and correction can be implemented at a cost of under 4 LSICs

(250 gates each) per processor. This is approximately the same amount of logic

4-5

I I
PROCESSOR
MODULE

SCRATCHPAD

MEMORY

I I
13 39 39 13 3 (CHECK ENCODE) 39

13

INTERFACE VOTER/ . REG. AED WIRE REG INTERFACE H MUX LOGIC UNIT REG

LOGI SWITCH ELECTRONICS LOGI

I I
CONTROL LOGIC MODULE CONTROL LOGIC

Figure 1. ARMMS Data Path for Error Analysis

that would have been required to implement a residue code checker and about
twice what would have been required for parity checker plus voting.

Modules will first try to detect and correct errors by masking in the TMR
or duplex mode or rollback and retry methods in simplex mode or in duplex mode
cases where masking cannot be achieved. In both cases errors will be tallied. If
the modules are not successful in correcting the error BOSS will be interrupted
and will obtain status information from the modules in question via the BMB
lines. BOSS will determine which module has failed through diagnostic routines,
place it at the bottom of that module classes' spare queue and try other modules
until a good one (hopefully) is found, place the good module on line, and resume
computation. In the TMR mode the task will continue to completion at top priority
and then the diagnostic procedure will be applied. ARMMS will be considered to
have failed if and only if BOSS cannot find a usable module in each class by this
procedure or if an erroneous computation goes undetected. A module is not con-
sidered to have failed until the failure manifests itself. Using internal error
detection within modules allows masking of errors in duplex mode and detecting
them in simplex so as error detection coverage approaches unity duplex opera-
tion looks like TMR and simplex looks like duplex. In many cases this could
allow higher throughput and longer system life due to using fewer modules per
stream.

4. 1.7 ARMMS Configuration

One of the toughest challenges ARMMS faces is rapid reliable reconfigu-
ration at a reasonable cost in power, volume, and complexity. Three major
configurations were discussed in the ARMMS Phase II report. In addition a
fourth BOSS-less configuration is described later in this report. A prime con-
sideration of the ARMMS baseline configuration adopted in Phase II was the
minimization of the number of module classes and the number of system level
interconnections between modules without sacrificing reliability or performance.
To this end many busses and ports of earlier configurations were combined or
eliminated, memory functions centralized, and voter/switches placed internal
to the modules. Four module classes and 3 internal bus classes remain; inter-
connected as shown in Figure 2.

BOSS - This single, subpartitioned module will execute routines for data
and I/O scheduling, interrupt processing, system test, repair, and configura-
tion, and power and clock switching and distribution. BOSS will be an internally
redundant self testing and repairing special purpose computer including such
instructions as LOAD, STORE, NO OP, JUMP, TEST, SPCJ, AND, OR, SHIFT,
ADD, SUB, plus macro instructions to speed up frequently used processes such
as table searches and special control instructions used for monitoring and con-
trolling other ARMMS modules. BOSS will consist of four or five identical sub-
partitions "B" containing power supply, timing oscillator, memory bus interface
and control bus voting components.

IOP - ARMMS can accommodate up to 4 I/O processors. Each I/O proc-
essor contains standard logic matching it to ARMMS system interfaces. Internally
the processors can be mission dependent containing either general or special
purpose logic. IOP functions include paging between bulk and main memory
modules, spacecraft status monitoring and preprocessing, and spacecraft con-
trol. IOPs can be used singly, in pairs, or in triads, or can be internally redun-
dant with multiple bus outputs.

4-7

MAIN MAIN MAIN MAIN
MEMORY MEMORY MEMORY *o*oo** MEMORY

1 2 3 16
BOSS
TO/FROM
MODULE
BUSES
(2) PROC TO MEM

BUSES (4)

BOSS PART 1

BOSS PART 2

BOSS PART N

MEM TO PROC.
BUSES (4)

MVL

lop IOP CPE CPE
1 4 1 7

a- SYSTEM INPUT BUS

SYSTEM OUTPUT BUS

Figure 2. ARMMS System Configuration

CPE - ARMMS can accommodate up to 7 CPEs (Central Processing
Elements). Up to 4 CPEs can be on line simultaneously with up to 4 IOPs and
BOSS. CPEs can be utilized singly, in pairs, or in triads depending upon mission
requirements. The CPE is an outgrowth of the SUMC processor modified to in-
clude self test logic, BOSS monitor and control interfaces and overlapped mem-
ory accessing.

MM - ARMMS can accommodate up to 16 main memory pages correspond-
ing to 16 active memory modules in simplex configurations or larger numbers in
dual or triad configurations. The total number of modules would be limited by

4-8

bus driving components and might nominally be 25. The nominal module size is

8,192 words each containing 32 bits of data plus a 7 bit single error correcting,
multiple error detecting Hamming plus parity code for data.

PMB - ARMMS contains 4 processor to memory busses. Each CPE is

connected to 2 of these busses. IOPs are also nominally connected to 2 PMBs

but can be connected to any number depending upon their design. BOSS and all

memories will be attached to each of these 4 busses. Each bus contains 13 data

lines, including error coding, and an Access request line. Software will keep
track of the 2 non-existent bus ports on each processor in the same way as it

does failed bus ports.

MPB - ARMMS contains 4 memory to processor busses each of which is

connected to every processor module in order to allow TMR voting between any
triad of busses and unlimited choice of processors with which to make up the
triad. Each bus contains 13 data lines, and a response line.

BMB - Finally ARMMS contains 2 (one plus a spare) BOSS to/from
module busses on which BOSS sends control codes to processors and memories

and receives status information upon request. All commands and responses are

coded and commands are address-tagged on this bus. The bus will nominally
consist of 8 data lines plus dedicated parity, clock, and sync lines. BOSS may
command or interrogate other modules at will or in response to individual
interrupts from them.

An intermodule interface has been designed that allows any CPE, IOP, or
BOSS module to address any non-protected memory page. It's design and opera-

tion were described in detail in the ARMMS Phase II report. It allows any com-
bination of simplex, duplex, or TMR streams with any combination of relative

priorities to co-exist with minimum bus contention providing that no more than
4 CPEs, 4 IOPs, and BOSS are involved simultaneously. The interface allows
all modules of a class (CPE, Memory, etc.) to be virtually identical. Interface

gate complexity and module to module interconnections have been minimized.
Whenever a stream is formed BOSS sends each processor module involved a
stream status code on the BMB lines defining all bus connections within the
stream. Once assigned to a stream a processor always uses the pair of busses

specified by the stream status code for communication to and from memory
eliminating bus contention among processors of a given type. For redundancy
each processor can output on a choice of two busses. This choice is made by
BOSS command.

The ARMMS priority structure will involve both hardware and software
elements. The hardware recognizes a minimum of 16 different priority levels.
The software then selects different subsets of these 16 as program requirements
dictate. The highest hardware priority goes to BOSS since the efficiency of the
rest of the system depends on BOSS completing its tasks efficiently. The second

highest priority is a special TMR CPE mode used only in the event of an error
in one of three TMR channels to insure completion of the TMR task with maxi-
mum speed prior to initiating diagnostic tests on the stream. The next seven

priorities are for I/O streams on the assumption that the timing of external
events happening and mass data transfers is more difficult to control than the
timing within processing streams and hence IOP memory access requests should

be given higher priorities than CPE access requests. The seven lowest priori-
ties are for CPEs.

4-9

So long as BOSS, I/O, and CPE programs are mostly segregated into
different memory pages all 3 types of programs should be able to be executed
simultaneously with minimal bus or memory contention. When these programs
wish to access the same memory page the internal logic design of the memory
access logic will tend toward letting the streams access the memory a word at
a time in turn since each processor will release the memory temporarily be-
tween access requests letting the next higher priority stream gain access for
one word. This results in all contending streams slowing down but none stopping
entirely. Obviously this does not preclude the need for designing the software to
minimize memory contention if ARMMS is to perform efficiently as a
multiprocessor.

4.2 Memory Module Reliability and Register Level Design Study

It is likely that the least reliable of the ARMMS modules will be the main
memories due to the large number of discrete components and small scale inte-
grated circuits required and the power levels associated with accessing the
plated wire planes. Fortunately, however, analysis has shown that due to their
organization it is possible to achieve 99+% memory reliability on a system basis
through judicious use of error detecting and correcting codes which are generated
and checked within processor modules and stored in each memory word, internal
redundancy within memory modules, spare modules, and duplex memory opera-
tion for duplex or TMR processing streams. Software read-after-write in the
simplex mode and duplication of data from a good memory into a spare memory
in duplex or TMR modes would also be desirable. Using these techniques the
results shown in Tables I and II have been obtained. Table I summarizes prob-
abilities of occurrence of dominant failure modes along with recommended
solutions while Table II lists various causes of memory failures again with their
contributions to the memory module's failure rate. A block diagram of the
proposed memory module is shown in Figure 3. The failure rates were derived
from data in a 1971 Autonetics Space Station Study. The memory is assumed to
use plated wire technology in an 8192 word by 39 bit (32 data bits plus error
correcting codes) organization. Some differences will be noted between Table I
and II and similar ones in the Phase II report due to the use of updated failure
rate data. The rates in the original study were more representative of the late
1960s than of the early 1980s and hence showed the memory in an excessively
pessimistic light when compared with other ARMMS modules. Failure rates
given for all modules in this report are believed to be consistent.

4.2.1 Memory Module Register Level Design

Plated wire technology was chosen for the ARMMS main memory because
of its low, power, weight, and volume and non-volatility in the presence of
power transients. Such memories are being used extensively in space computers
being designed today for these reasons. The basic organization consists of a
512 word by 628 bit structure which is accessed in a 2-1/2 D configuration
requiring 512 word drivers, a 628x39 low level bit multiplexer and 39 bit-switch/
sense amplifier circuits allowing 32 data bits plus 7 error detecting/correcting
code bits per word. The memories' cycle time is assumed to be 600 nsec for
READ and 800 nsec for WRITE. The details of the memories' control and voting
logic were discussed in the configuration and error correction sections respec-
tively of the Phase II report. The remaining logic is straightforward except for
noting that since the memory must sometimes output data on one bus while the

4-10

TABLE I. DOMINANT MEMORY FAILURE MODES AND
RECOMMENDED SOLUTIONS

1. Wrong Output of a Single Bit in Each of a Group of Words

Cond Prob/Given Failure = -0.600
Solution - All Modes Hamming-Parity Error Masking Code

2. No Output of all Bits in a Group of Words

Cond Prob/Given Failure = - 0.220
Solution - Simplex All "O" Output - Parity Error-

Detection
- Duplex Voter/Switch Output "1" on

Disagreement - Masking
- TMR Majority Vote - Masking

3. Selection of Two Words in Memory at Once

Cond Prob/Given Failure = -0. 175
Solution - All Modes Employ Series Redundant Word Drivers

to reduce this prob to 0. 0014

4. Improper Memory Output Synchronization

Cond Prob/Given Failure 0.005
Solution - Simplex None

- Duplex Detect Disagreement at Voter/Switch
- TMR Vote and Mask at Voter/Switch

address for the next cycle is being inputted on another a one word Access-

Request Buffer is required to hold the current address stable until the end of

the memory cycle.

4.2.2 Memory Reliability Analysis

The dominant failure mode of Table I can be masked by a single error
correcting code. The second mode can be detected by such a code if the code bits
are inverted prior to storage so that a code check on a word consisting of all "O"

will fail. The third mode is the most serious because it can cause properly coded
words to be written or read from the wrong location in memory undetected. It is
caused by a stuck-on"l" condition in one of the hundreds of plated wire word line
drivers. By employing series redundancy in these drivers, the conditional prob-
ability of occurrence of this condition can be reduced to a negligible value.
Series parallel redundancy (quadding) in these drivers will also virtually elimi-
nate the principal cause of the second failure mode. However, it is probably
preferable to provide additional spare memories rather than to resort to quadded
word drivers due to the large hardware increase involved in quadded word
drivers.

The mean failure rate of a memory employing single error correction
coding and serial redundant word drivers is less than half that of a memory

4-11

TABLE II. ARMMS MEMORY FAILURE MODES

Failures/106 Hours

Enhanced
Basic Reliability

Component Failing Result Memory Memory Corrective Action

Word diodes, switches, No output 0.565 1. 105 Detect with Inv Hamming-

mux drivers stuckon"O" (whole words) (0. 013)* Parity code

- current source or

power supply failure

Word diodes, switches, Select 2 words 0.540 0.013 Not always detectable

mux drivers stuck on "1" at once

Plated wire or sense

amp failed Single bit 1.525 1.790/ Correct with Hamming-

Mux or bit current failed 0. 072** parity code

switch open or short

Select wrong 0. 005 0. 005 Detect and inhibit with
address parity code

No response to 0. 010 0. 010 Processor timing check
access request

No output 0.060 0.060 Detect with inv Hamming-

Control logic (whole word) parity code

failures Single bit 0. 060 0. 060/ Correct with inv Hamming-
failure NIL** parity code

Detectable 0. 060 0. 060 Detect with inv Hamming-

garbled parity code
output

Parity checker 0. 005 0. 005 Detect with Software
failure

Total Failure Rate 2. 83 3. 10/
1.33**

*Number in () assumes quadded word drivers - not recommended due to excessive hard-
ware involved.

**First number is probability of correctable failure, second number is probability of

detectable but not correctable failure.

4-12

SENSE OUT , MEM TO
AMPS / MUX PROC. BUSES

READ
39

RPLATED LOT 13
WIRE LEVEL XFER
ARRAY BIT
512 X 628 MUX

628 X 39 DATA REG.

BIT
SWITCH

ADDRESS REG. 39 T

13 1&

PROC. TO MEM
BOS MBUSES

ACCESS

HOLD REG. ACC. RE . BUFF. DECODE ACC. REQ.I , HFLOGIC MEM RESP.
PAGE ADDR., ETC.

ERROR
CHK

BOSS TO/FROM
BOSS MODULE BUSES
CONTROL
LOGIC -TIMING. SYNC.

Figure 3. ARMMS Main Memory Functional Block Diagram

without these features. What is more, undetectable failures make up less than
0.5% of the total failure modes yielding a coverage in excess of 0.995. Duplex
or TMR operation is required when it is desirable to avoid program rollbacks in
the event of a non-correctable memory failure.

In duplex or TMR operation the contents of the good memory can be
written into a spare module or used in simplex for the duration of the program.
In simplex operation it is essential to avoid writing bad data into the memory,
or good data into the wrong location. The former condition can be protected
against by immediate verification of all written data by reading out the same
location immediately after writing into it in a simplex program. If the data is
wrong the procedure can be repeated until the WRITE is accomplished success-
fully. The latter condition can be protected against by employing an address
parity check code at the memory and inhibiting WRITE operations any time
address parity is violated. Parity checkers can be provided in each memory at
a small hardware cost.

Another result worth noting is that as the number of memory modules
required goes up, the ratio of operating modules to required spares decreases,
making the use of spares vs internal redundancy more attractive for larger
numbers of modules required. A memory module incorporating a single error
correcting code and series redundant word drivers should have a probability of
surviving a 5-year mission of 0. 943 (compared to 0. 883 for a memory without
these features). This means that if 5 modules are used there will be a 0. 9983
probability that at least 3 will be operating after 5 years. If 10 modules are
flown there will be a 0. 9983 probability that at least 7 survive.

4. 3 ARMMS BOSS Register Level Design and Reliability Study

A register level design and reliability analysis were performed for BOSS
along with a basic instruction set and list of macro instructions. A partitioned
BOSS module should be capable of achieving a reliability of 0. 9999 over a five
year mission and would require approximately 125 LSICs (of 250 equivalent gate
complexity each) to implement.

BOSS will execute routines for data scheduling, system test, repair, and
configuration, and interrupt processing. For four simultaneous processing
streams executing programs of an average of 5 msec duration BOSS will execute
at least 800 routines per second. To meet these function and speed requirements,
BOSS will have to be a small special purpose computer including such instruc-
tions as LOAD, STORE, NO OP, JUMP, TEST, SPCJ, AND, OR, SHIFT, ADD,
SUB, plus macro instructions to speed up frequently used processes such as
table searches requiring correlations and list processing.

BOSS will look functionally similar to the SUMC CPE - however SUMC
instructions such as Multiply, Divide, Square Root, Floating Point and double
precision will not be needed and special system monitoring and control logic will
be required in BOSS but not in the CPE. BOSS will be capable of accessing and
testing half-words, bytes, bits, multiple words and variable length fields for
efficiency in list handling. If a modified SUMC related design is used for BOSS,
speed requirements would limit average BOSS program lengths to about

4-14

875 operations per task assuming 4 streams operating simultaneously with a

5 msec average task length. Individual BOSS processor partition complexity is
expected to be 60% of the present SUMC complexity or 90% of that of an ARMMS
CPE based on a modified SUMC processor.

Originally BOSS was envisioned as a group of identical modules any three
of which could be operated in TMR to provide ultra-high reliability. However,
BOSS will have nearly 300 system level interconnects and if a group of BOSS
processors were used each one would need almost this many interconnects. In
addition, with individual BOSS processor modules, location of BOSS power and
configuration control, command voting, oscillator and power supply logic be-
comes a problem. One solution is to group these functions into a very simple
and hence very reliable internally redundant "super-BOSS" module. The inter-
connect problem which can effect both volume and reliability is solved by group-
ing the BOSS processors and the "super-BOSS" physically into one module re-
quiring only one set of system level interconnects. The BOSS processors and the

"super-BOSS" become partitions "A" and "B" respectively. Reliability estimates
based upon BOSS register level design indicates that 4 "A" partitions and 2 "B"
partitions should meet ARMMS reliability goals.

4.3.1 BOSS Reliability Analysis

By operating BOSS in at least a duplex mode (and in TMR so long as
possible) failures in most BOSS logic will be detected - including those in the
ALU and control logic blocks. Parity checks can be performed inexpensively on
BOSS memory and the Hamming Parity logic is required in order to check the
main memory, keeping the cost associated with self-checking BOSS to a mini-
mum. If BOSS detects and isolates an error to a memory module it is accessing
it generates an internal interrupt allowing the executive software's memory
replacement routine to be actuated.

BOSS is estimated to have a 0. 9999 probability of successful duplex
operation after 5 years and a 0. 9957 probability of continued TMR operation over
that period, assuming 4 partitions "A" are flown. These reliability figures
assume the register level designs shown in Figure 4. Table III lists BOSS failure
modes along with resultant error patterns, failure rates and suggested correc-
tive action as a function of the component block failing. The CPE Register Level
design and Reliability Study topic in this report includes CMOS LSIC functional
partitioning estimates for both BOSS and CPE modules. It is expected that
most BOSS integrated circuit designs would be usable in the CPE as well. BOSS
partition "A"s are anticipated to use 31 chips of 10 different types. The dashed
lines in Figure 4 delineate these partitions.

Referring to Figure 4, similarities can be seen between BOSS and SUMC
since SUMC was used as a starting point. However, the memory Input and
Instruction registers are duplicated to allow for instruction overlapping, there
is no MQ register or floating point unit since these functions are not needed in
BOSS, error detection logic and bus interfaces and voting logic have been added
along with priority interrupt and interval timer logic and the ALU-multiplexer
structure has been simplified. At a detailed level radical changes are expected
in the structure of the microprogram read-only-memory and scratchpad memory
and in general the design has been simplified and streamlined to increase the
processor's speed and ease error detection and correction. Hence SUMC LSI

4-15

TABLE III. BOSS FAILURE MODES

Failure/

Components Failing Result 106Hr Corrective Action

Input mux or voter/switch Triple-bit error 0.043 Detect with H-P code-
inhibit out

Mem in, addr, data reg output Single bit error 0. 125 Detect and mask with
and ALU muxes H-P code

Scratchpad memory (SPM), Single bit error 0. 130 Detect with parity
MQR check, inhibit out-est

coverage = 0. 95

Arithmetic logic unit Multiple-bit error 0. 102 Detect in duplex, mask
in TMR-est coverage
= 0*

Microprogram ROM (MROM) Control bit error 0. 125 Detect with parity
check, inhibit out-est
coverage = 0. 9

Instruc reg and mux SPM or MROM addr 0.031 Detect by comparing
bit error with memory in reg-

inhibit out

Interrupt reg, iter ctr, seq Improper execution, 0. 086 Detect in duplex, mask
and mem acec contr, clock loss of sync in TMR-est coverage
regs = 0

Error detection logic False error indication 0.108 Inhibit Output

Total 0.750

*This failure mode could be detected and masked internal to the partition by duplication of
the A LU and comparing outputs. Since BOSS is not to be operated in simplex this
redundancy is not necessary nor recommended although it is desirable in processor
modules.

modules are not likely to be useful for BOSS and the CPE should probably be an
extension of the BOSS design rather than a modification of SUMC in order to
maximize commonality and minimize cost within ARMMS.

Referring to Table III it can be seen, assuming no duplication of the ALU
logic within a BOSS partition and at least duplex operation, that nearly 75% of
BOSS failure modes will be maskable and that virtually all will be detectable. In
TMR operation, virtually all failures can be masked. The numbers in the table
are also representative of CPE failure rates except that with duplication of ALU
and floating point arithmetic logic the conditional probability of being able to
detect a failure given that one occurs while operating with simplex mode rises
accordingly. As noted earlier simplex operation of BOSS is not necessary or
desirable in ARMMS while simplex processor operation is both to be expected

4-16

!9

S6 SEC INT. 6 SEC INT.

BMB MB LOAD INTERVAL TIMER SYSTEMCLOCK
COUNTER COUNTER

f I I

INPUT INTERRUPTHOLD
MUX 11 REG AND GATING - jSRTHA

VOTER/SW 131 1 AREG. jLi . .I " t

MEMORYSP A .. .RITHETIC S IoFT R,
EM ACC. CODE 32 LOGIC UNIT 32 32 R

MEM INPUT I I MEM INPUT - MEMORYRG .1 IT
RRE. 39

ALu BITCOROMUX
-

ROR
-

INSTRUC. I .INST2RUC.
R 16 REG2 16

PARITY CHKCO TROLITO ° - HAMo1ALL BLOCKO H .AMMINGCHK OD
ERROR r=: OUTPUT

TEC OUT INHIBIT

ITR. I I I IR PARITY CHK ~ LOGC T PusRl

MUX 16U

L" I
TO FAULTS IN

Famare~~~ARIT OTE ABMOOSSuctoa BokDig

A MIROPRGRAMBCHR
MODULES

.OM 2,6ii~
;ME R E SP., MEM CC I SEQ

AC2C. DNTR

Figure 4.. ARMMS BOSS Functional Block Diagram

and desirable. Note that parity checks are made on BOSS internal memories..
Certain on-chip addressing logic problems are not detectable with a parity check
therefore memory coverage is expected to be 0.9 to 0. 95 rather than unity.
Coverage is assumed to be unity in the tables "corrective action" column except
as noted. When one partition's output is inhibited, the memory module's voter/
switch will mask this output allowing the other partition's correct output to

propagate to the memory. The same thing is true of partition "B" command vot-
ing logic.

Given a non-maskable failure in a BOSS partition the replacement
algorithm implemented a partition "B" is as follows:

1. Power on partitions 1, 2, 3 at the start of the mission.

2. Replace the first failing partition with partition 4 (prob 0.1040).

3. Power off the second failing partition - BOSS is now in duplex

operation (prob 0. 0043).

4. If a third, non-maskable failure occurs (prob 0. 0001) ARMMS will
cease operating and wait for outside assistance. Retrying BOSS
partitions can be done on command but will not be done automatically
since this won't necessarily correct the failure and can lead to
undetected erroneous computations being outputted from the
computer.

Partition B is statistically very reliable but conservative design calls for
providing a spare partition to be switched in automatically upon self-detected
disagreement within the first partition.

4.3.2 BOSS Register Level Design

The BOSS microprogram read only memory organization is summarized
in Figure 5. Bits have been provided to implement all BOSS micro and macro
instructions discussed later in this section. This MROM would have to be
modified for CPE operation. Fields are included for interrupt, interval timer
scratchpad memory, ALU, Multiplexer, hardware register, bus interface, and
sequencer control functions. Each MROM word requires 42 bits plus parity and
256 words are provided reducing the memory to 15% of the size of the one in
SUMC.

Figure 6 shows the BOSS instruction and data formats. Three types of
instructions and one data format are recognized: Main memory reference
instructions contain an address for a 2nd operand fetch including a choice of
3 index registers, 4 base registers plus a no index register option when its field
is "O". An 8 bit op-code accesses the MROM directly with the op-code of an
instruction being the MROM address of its first micro instruction. Two register
addresses are provided for accessing two words from scratchpad memory dur-
ing the course of the instruction. Field R1 can access any non-privileged SPM
location while Field R2 accesses 8 of the accumulators. Single operand instruc-
tions have formats the same as above except that a third general SPM register
may be accessed with Field R3 rather than a main memory location. Link word

4-18

SPMFRMAT AL SPM ALU SHIFT SEQ. XFER Boss
ADDRESS R MUX MUX MX A D I M S T SEQUENCE ADDRESS OPER

ADRS. CONT. ' •
CONT. CNT. CONT. CONT.SXA

00 NO-OP
0 READ 00 "0" 01 READ
1 WRITE 01 SPM 10 WRITE

10 FC BYTE LD
11 SYSTEM CLOCK 0 MEM BUS

000 BYTE NO. 1 1 BMB
001 BYTENO.2 STROBE MAR
010 BYTE NO. 3 STROBE MDR 00 NOOP

100 LOWER HW STROBE MOR 10 LOAD IRP MASK REG
110 UPPER HW 11 CLEAR IR REG. BIT

INSTRUCTION START

0000 R1 TOGGLE OVERLAP ON "1"
0001 R2
0010 R3
0011 PC 000 NO-OP 000 NO OUTPUT
0100 BASE 001 A*B 001 NOSHIFT
0101 INDEX 010 A-B 010 LEFTCIRC.BYTE
0110 RPSW 011 B-A 0000 "" 011 LEFT CIRC. 1
0111 IPSW 100 AVB 0001 "1 100 RGT.SH. BYTE
1000 SPM

4
101 AAB 0010 MAR 101 RGT. SH. 1
110 AB 0011 MDR 110 LEFT SH. BYTE
110ARE 0011 MDR

1011 SP111 SPARE 0100 IR : R 1 BITMASK 111 LEFT SH. 1
1011 SPM

11
0101 IR R 20101 IR : R 21100 SPM

15 0110 FORM COTi. BYTE LD
: 0111 RCNTBYTELD

1000 MR
1111 SPM18 1001 MR = DISPLACEMENT

1101 IRP
1110 MROM SX A
1111 MAR A MDR CODE FUNCT/TEST IR OPER IC OPER

0000 NORMAL +1 +0
0001 (SPARE)
0010 UNC XFER -N +0
0011 COND XFER/FETCH EXIT -MDR +0
0100 UNC. LOOP +1 -N
0101 COND LOOP +1 -- MDR
0110 ISPARE)
0111 (SPARE)
1000 TEST IC (LOOP SHFT CONT.) +0/-N -1 IF > 0
1001 TEST IC (LOOP SHFT CONT.) +1/- N -1 IF > 0*
1010 TEST IC (BYTE SHFT CONT.) *0/-N -8 IF > 0
1011 TEST IC (BYTE SHFT CONT.) + 1/-N -8 IF> 0
1100 TEST ALU SIGN +1/-N +0
1101 TEST ALU OVERFLOW +1/-N +0
1110 TEST ALU NON -ZERO +1/N +0
1111 TEST IRP REG. +1/-N +0

'DECREMENT R1 & R 2 FIELDS OF IR AS WELL

Figure 5. BOSS Microprogram Memory Organization

MEMORY REFERENCE INSTRUCTIONS:

BYTE NO. 1 BYTE NO. 2 BYTE NO. 3 BYTE NO. 4

OP CODE (MROM ADDR.) R1 (GEN. REG. R2 X B DISPLACEMENT
ADDR.)I I I I I I

S L BASE REG. ADDR.

BYTES NO. 1, 2 GO TO INSTRUCTION REG., INDEX REG. ADDR.

ALL BYTES GO TO MEMORY INPUT REG. SEC. GEN. REG. ADDR (LOC. 25 ... 31)

SINGLE OPERAND INSTRUCTIONS:

BYTE NO. 1 BYTE NO. 2 RBYTE NO. 4

OP CODE (MROM ADDR) ADDR) R2 D OR T)

L MASK/SEC. ACCUM ADDR. 3RD ACCUM. ADDR.
BYTES NO. 1, 2 GO TO INSTRUCTION REG.
ALL BYTES GO TO MEMORY INPUT REG.

LINK WORD FORMAT (2ND OPERAND)

BYTE NO. 1 BYTE NO. 2 BYTE NO. 3 BYTE NO. 4

DISPLACEMENT (ATOM LINK) DISPLACEMENT (LIST LINK)

CDR .1 CDR

ALL BYTES GO TO MEMORY INPUT REG.

DATA WORD (2ND OR 3RD OPERAND)

BYTE BYTE.1 BYTE NO. 2 BYTE NO. 3 BYTE NO. 4

I I I

s I I I

0 1 1 2 1 3 1 4 I 5,1 6 I 7 i 8 1 9 I 10 I 11 12 I 13 I 14 1 15 16 I17 18 I 19 I 20 1 211 221 23 I 24 I 25 I 26 I 27 28 29 1 30 I 31

ALL BYTES GO TO MEMORY INPUT REG.

Figure 6. BOSS Instruction and Data Formats

instructions are used for list handling and provide two main memory address
fields allowing indirect address linkage to a data item in main memory and to

the next link in the list. Data words allow 32 bit signed fixed point data to be

accessed by BOSS.

Figure 7 shows the organization of the BOSS scratchpad memory. It con-

tains 21 accumulators, plus 3 index registers directly accessible by the program.
In addition a rollback program status word (RPSW) and interrupt status word

(IPSW) provide for program jumps on errors and interrupts and five base regis-
ters provide for extended main memory access when summed with an instruc-

tion displacement field. The RPSW, IPSW, and Program counter are read
accessible but not write accessible under normal conditions. The Index Regis-
ters can be used as additional accumulators. Seven of the accumulators can be

specified by the MROM for use as working storage during macroinstruction
execution. The base registers not accessible by the instruction's base field are

accessed automatically during program and subroutine branch instructions.

A system clock counter and a separate interval timer counter are included
in the BOSS module. The system clock counts for a 6 second interval with

100 p sec resolution. Longer periods are stored in a software counter in BOSS's

portion of main memory in response to a system clock interrupt. The interval
timer provides an interrupt at the end of a software specified interval of up to
6 seconds with 100 psec resolution.

BOSS includes a priority interrupt structure in which up to 32 priority
levels may be provided by software specification of a hardware interrupt masking
register's contents. Only interrupts corresponding to "1" bits in this register
will be responded to and cleared in the interrupt holding register allowing the
software to establish varying priorities for different interrupts and to complete
processing a given set of interrupts without further interruption from interrupts
of lower priority. The assumed hardware and firmware roles in the interrupt
structure are shown in Figure 8.

4.3.3 BOSS Interaction with Other Modules

BOSS will command and interrogate other modules via a 2-way BOSS/

Module bus (BMB). Each module will contain bus interface logic capable of de-
coding a unique access code for that module plus a general sync code which
allows simultaneously starting or stopping several pre-primed processors work-
ing together in the same stream. The interface logic will also gate the module's
status word MSW onto the BMB in response to a transmit MSW command from
BOSS to the module. Both processor and memory MSWs would contain their
BOSS assignments (memory page, processor bus access priority and stream
assignment codes) and in addition memories could use a one bit code to indicate
failures and the CPEs would include a 7 bit status code including a 2 bit hard-
ware determined error code and a 5 bit software determined termination code.

BOSS would then use the code to determine which subroutine to branch to
in response to the processors' status. BOSS could interrogate processors

periodically or in response to interrupts from them. Descriptions of, and for-
mats for, BOSS commands to other modules are shown in Figure 9. The "save"
and "restore" data commands cause the processor to store or load data respec-
tively from an area of memory defined in the commands. This allows BOSS

4-21

"SCRA
T CHPAD

PROG. DATA B
I. ADDR

BASE REGISTERS (5) GLOBAL DATA RANGE
2 -

GLOBAL DATA 23_ -
PROGRAM

ROLLBACK PROGRAM STATUS WORD (RPSW) RODRM
.. -- - RANGE

INTERRUPT PROGRAM STATUS WORD (IPSW) R

PROGRAM COUNTER (PC)

8

-9 PRIME ACCUMULATORS (4)

10

11

12

LIST HANDLING WORKING STORE (4)
13 (OR ACCUMULATORS) - MROM

ADDR.
14 - RANGE

R1 OR
R3 15
ADDR.
RANGE

16

17

19

20
R2
ADDR.

PRIME ACCUMULATORS (13) RANGE

23

24

25

26

27

28

29 T
INDEX REGISTERS (3) X
(OR ACCUMULATORS) ADDR.

30 RANGE

31 l

PROGRAM CAN ACCESS ALL LOCATIONS FOR READ. LOC. 8 ... 31 FOR WRITE

Figure 7. BOSS Scratchpad Memory Organization

4-22

INTERRUPT
OCCURS

DISABLE INTERRUPTS
MA R.M EM
INTERRUPT REGeMEM.
CLEAR INTERRUPT REG.
BITS CORRESPONDING
TO "1" IN MASK REG. ,AUTOMATIC

OLD PC* MEM* IPSW-PC FIRMWARE

BUSS REGS --*MEM* SOFTWARE
STORE INTERRUPT REG
"1" BITS AS PENDING

RETURN FROM
INT. SUBROUTINE

SEARCH FOR HIGHEST
PRIORITY INT. PENDING

REMOVE INTERRUPT
FROM PENDING FILE

SEARCH FOR NEXT
HIGHEST PENDING
INTERRUPT SIM INSTRUCTION

CLEAR MASK BITS FOR
LOWER PRIORITY INT.
THAN THE HIGHEST
PENDING.
RE-ENABLE INTERRUPTS

OTHER YES
INTERRUPTS

PENDING

ACTUATE HIGHEST
LEVEL INTERRUPT
PENDING.
SUBROUTINE PR.-- PC

SIM INSTRUCTION

RESTORE ORIGINAL
MASK REG. CONTENTS *BOSS REG AND PC FIRST GO TO A

GENERAL LOCATION IN CORE
GO TO THEN TO THE APPROPRIATE TASK
SUBROUTINE CONTROL BLOCK PRIOR TO

RE-ENABLING INTERRUPT

GO TO

DISPATCHER

Figure 8. BOSS Software/Firmware Interrupt Handling

4-23

BOSS TO MODULE COMMANDS

CODE COMMAND MEMORY PROCESSORS ARGUMENT (6)

00 STOP - SAVE DATA ** - PRIME FOR SYNC X MEMORY ADDR.
STOP

01 RESTORE DATA* - PRIME FOR SYNC
START X MEMORY ADDR.

10 TRANSMIT MSW X X SUBCODE = 0

11 LOAD ASSIGNMENT REG X X ASSIGNMENT

10 SYNC START X SUBCODE =1

*GIVES BOSS WRITE ACCESS TO PRIVELEGED BASE/BOUND REGISTERS.
**CAUSES AUTOMATIC CPE SCRATCHPAD MEMORY DUMP

FORMAT:

SYNC PARITY DATA

TIME t j 1 P 8 BIT 2 of 4 CODED ADDRESS

CODE ARGUMENT OR SUBCODE
TIME t +1 0 P (2) (6)

FIGURE 9

access to the processor's registers including privileged Base/Bound registers
not accessible by general programs. Transmission on the BMB will be parity
coded and a sync line is included to activate modules' access decoders. The
BMB is duplicated so that modules can verify accuracy of commands through
comparison of signals on the 2 buses and BOSS can likewise verify data from the
modules.

4.3.4 BOSS Instruction Set

BOSS microprogrammed firmware includes 29 general purpose instruc-
tions plus 37 specialized macroinstructions. BOSS macroinstructions cover bit
and byte testing, byte, half-word, multiple word, and field load and store in-
structions, a set of instructions for formation and manipulation of linked lists,
and instructions for interrupt handling and communication with other ARMMS
modules. These instructions were designed to allow rapid, efficient manipula-
tion of various tables, lists, queues, and other data structures contained in
BOSS memory. The macroinstructions, as listed in Table IV, use an estimated
115 words of microprogram read-only-memory, and have an average execution
time of 1. 7 jsec each, assuming 10 MHz system clock. This compares with
29 basic instructions listed in Table V having an average execution time of
1. 4 Asec and requiring 93 words of microprogram storage.

4.4 ARMMS CPE Register Level Design and Reliability Study

A register level design and reliability analysis were performed for the
ARMMS CPE module along with a study of CPE/BOSS/IOP commonality. The
CPE is based on a SUMC design extensively modified for increased performance
reliability and compatibility with ARMMS system requirements. The ARMMS
CPE requires 35 LSICs (of 250 equivalent gate complexity each) and should ex-
hibit a failure rate of 0o. 85 x 10-6 failures/hour and have 80% commonality with
BOSS partition "A" and IOP logic. The CPE requires 1.2, 5.0, and 9. 6 psec to
perform addition, multiplication, and floating point division instructions respec-
tively assuming a 5 MHz clock and overlapped instruction fetching as in the case
of BOSS.

4. 4. 1 CPE Commonality with BOSS and IOP

As noted earlier in this report, making the BOSS and CPE modules
identical does not appear to be desirable. However, accomplishing identical
functions within both CPE, IOP, and BOSS modules with identical LSI chip de-
signs does appear feasible and should minimize system development costs since
fewer different chip types need to be developed and tested. With this in mind an
LSI partitioning study was conducted and 18 LSI chip types were tentatively
identified and are listed in Table VI. Of these 18, 8 are used both in BOSS IOP
and CPE modules, 1 is used exclusively in the CPE, 1 in the CPE and IOP,
2 are used exclusively in BOSS and 6 are used exclusively in the IOP. In terms
of total chip quantities the modules each have 28 chips in common out of a total
of 36 for the CPE, 45 for the IOP and 32 for BOSS.

In the partitioning study the number of gates ranged from 180 to 270 per
device while the number of pins ranged from 20 to 80 per device. The assumed
number of gates is realistic in terms of near future CMOS silicon-on-sapphire
technology as are 5 MHz clock rates and 0. 5 watt/chip power dissipations but

4-25

TABLE IV. BOSS MACRO INSTRUCTIONS DESCRIPTIONS

Microprogram

Mnemonic Instruction Timing Cycles Storage

LIT Load and start interval timer 8 1

RSC Read system clock reg 8 1

SIM Set interrupt mask 8 1

LRR Load rollback reg from prog ctr 21 2

COM Command module via BMB 12 1

INM Interrogate module via BMB 12 1

XCR Exchange registers R1 and R2 16 5

XFR Transfer reg R1 to reg R2 10 2

LMR Load multiple registers 14 + 6n* 4

SMR Store multiple registers 14 + 9n* 4

*These instructions allow loading or storing of n 1 ... 8 contiguous registers

as specified by R2, starting at locations R1 in scratchpad memory and A in

main memory.

Generalized "Clear and Add" and Store Instructions

Mnemonic Function

LB1, SB1 Load, store byte 1
LB2, SB2 Load, store byte 2
LB3, SB3 Load, store byte 3
LB4, SB4 Load, store byte 4
LH1, SH1 Load, store half-word 1

LH2, SH2 Load, store half-word 2
LDA Load address
LIH1, SIH1 Load, store indirect half-word 1

LIH2, SIH2 Load, store indirect half word 2

Timing Microprogram Storage

Direct loads 1. 2 psec i word
Direct stores 1. 5 sec 1 word
Indirect loads 1. 8 psec 2 words
Indirect stores 2. 1 psec 2 words

All byte and half word instructions right-justify bits on loads and assume right-

justified bits on stores.

4-26

TABLE IV. BOSS MACRO INSTRUCTIONS DESCRIPTIONS (Continued)

Generalized Test Instructions (Arguments are assumed to be stored in respec-
tive registers prior to execution of these instructions)

BON R 1 , R2, A Branch if bit on

BOF R1, R2, A Branch if bit off

TUM R 1 , R2, A Test under mask, branch on equal

TDM R 1 , R2 , A Test under mask, branch on equal, else decrement index

R 1 = Bit No. to be tested in BON, BOF

R 1 = Genl reg to be compared with memory in TUM, TDM

R2 = Branch distance in all instructions

A = Address (incl base and index) of memory location under test

R2 + 1 = Address of 32-bit mask in TUM, TDM

Index register to be decremented in TDM is specified by the X portion of A.

Timing: BON, BOF = 1.5 Asec TUM = 1. 7 sec TDM = 1. 9 tsec
BON, BOF = 3 TUM = 4 TDM = 5 words

Generalized Partial Word Instructions (Arguments are assumed to be stored in

respective registers prior to execution of these instructions)

CLF, R1 , R2 , A Clear and add masked field
STF

R1 , R2, A Store masked field

R 1 = Genl reg to be loaded or stored from

R2 = Addr of 32-bit mask - bits of R or A corresponding
to

Mask postions containing "1" will be changed, remaining bits will not be

changed.

A = Address (incl base and index) of memory location containing bits
in question.

Timing = CLF = 1.2 psec STF = 2.7 lsec
Memory Est: CLF = 1 STF = 7 words

4-27

TABLE IV. BOSS MACRO INSTRUCTIONS DESCRIPTIONS (Continued)

List Manipulation Instructions - (arguments are assumed to be stored in respec-

tive registers prior to execution of these instructions).

BOSS Specification Function

NXT R 1 , - , - , Step to next item

INS R 1 , - , A Insert A after W

RMV R 1 , - , - Remove W

FND R 1 , R2 , R 3 Find item according to mask

R 1 Word offset in the (assumed) atom to be fetched

R 2 Mask with "1" bits in bit positions to be compared

R 3 Genl reg containing word for comparison

A Pointer address

Timing: NXT = 2.6, INS = 5.4, RMV = 4.0, FND = 1.8 +3.6 psec/item

Memory Est: NXT = 8 INS = 15 RMV = 11 FND = 15 words

TABLE V. TENTATIVE BASIC BOSS INSTRUCTION SET

Avail. in Timing Microprogram

Mnemonic Instruction SUMC Asec Storage

JRE Jump On Register Equal to Y 1.5 4

Memory

JRG Jump on Register Greater than Y 1.4 2

Memory

JRN Jump on Register Not Equal to N 1.5 4

Memory

JRL Jump on Register Less than N 1.4 2

Memory

SPJ Store Program Counter and Jump N 2.1 2

JMP Jump Unconditionally Y 1.4 1

JPI Jump Unconditionally Immediate Y 1.4 1

4-28

TABLE V. TENTATIVE BASIC BOSS INSTRUCTION SET (Continued)

Avail. in Timing Microprogram
Mnemonic Instruction SUMC sec Storage

XEC Execute N 0.8 1

ADM ADD Memory to Register Y 1.2 2

SBM Subtract Memory from Register Y 1.2 2

ANM AND Memory with Register Y 1.4 2

ORM OR Memory with Register Y 1.4 2.

XOM Exclusive OR Memory with Y 1.4 2

Register

ADR ADD Register to Register Y 1.2 4

SBR Subtract Register from Register Y 1.2 4

ANR AND Register with Register Y 1.2 4

ORR OR Register with Register Y 1.2 4

XOR Exclusive or Register with Y 1.2 3

Register

ICT Increment Memory N 2.3 3

NOT Complement Register N 1. 6 3

DLY Delay N Cycles Y 0.8 1

HLT Halt and Wait for Interrupt Y 0.8 1

CWM Compare Register with Memory N 2.2 4

CSR Compare Register Selectivity with N 2.2 5

Register

SHR Shift Right N Bits Y 2.0 6

CYL Cycle Left N Bits Y 1.8 5

SHL Shift Left N Bits N 2.0 5

C LA Clear and Add Memory Y 1. 2 1

STO Store in Memory Y 1.2 1

NOTES: 1. Speeds assume 10 MHz system clocks.
2. Microprogram storage estimates assume an additional 6 word fetch

routine.

4-29

TABLE VI. BOSS/CPE/IOP LSI PARTITIONING COMMONALITY

Usage Estimated

Type Function Bit Width BOSS CPE IOP Pins Gates Coverage

1. Sequence, memory access, - 1 1 1 75 220 0
and A LU mux control

2. M, D, sqrt control, BOSS -0 1 1 70 180 0

status control and SPM
addr control

3,4 Hamming-parity error 9-12 4 4 4 50 270 1. 0
checker

5. EALU 7 0 2 0 60 230 1.0

6. ALU 8 4 8 7 30 255 0/0/1.0

7. Voter switch/in/out mux 5 3 3 3 80 215 1. 0

8. Mux-Register 2-5 8 8 8 70 245 1. 0

9. SPM 9 4 4 6 25 288 Bit 0.95

10. MROM 10 5 5 5 20 2560 Bit 0.9

11. Interrupt holding and 16 2 0 0 45 225 0
masking and interval
timer

12. System clock and SPM 16 1 0 0 65 185 0
addr mux contr

13. Channel registers 3-16 0 0 2 76 265 0

14. SPM, channel-mem 8-10 0 0 4 50 115 0
registers

15. Chan-mem interface - 0 0 1 60 250 0
control

16, 17 Channel command con- - 0 0 2 60 250 0

trol, I and II

18. Device interface control - 0 0 1 60 250 0

32 36 45

the number of pins is somewhat optimistic, especially for beam leaded devices.
However, the pin requirements will probably not be unrealistic by 1980 if ad-
vances in the state of the art continue at their present rate. More refined LSI
partitioning studies based on CPE detailed design have been included as part of
an ARMS breadboard follow-on to this contract.

CPE Reliability Analysis

A CPE reliability analysis was performed. A summary of potential CPE
failure modes indicating component failing, failure rates, and corrective action
taken by the CPE as a function of component block failing is listed in Table VII.
Internal to each CPE, arithmetic and some control logic is duplicated with out-
puts compared and parity checks are made on both microprogram and scratch-
pad memories. In general the reliability discussion of Table III is the BOSS
module description also applies to the CPE.

For the CPE module, failure analysis leads to the following additional
results:

1. If a CPE is replaced at the end of a task in which it fails, and soft-
ware is capable of switching the CPE output to a redundant output
port if the primary port fails, and redundant ALUs and EALUs are
used, the CPE has the following reliability characteristics:

Logic Failure rate/106 hours : 0. 85
Simplex mode coverage = 93%
Duplex or TMR coverage z100%
Failures Maskable in Simplex :14%
Failures Maskable in Duplex =93%
Failures Maskable in TMR -100%

2. Power supplies and buss interface electronics failure rates are less
than 10% of the logic failure rate.

3. Approximately 33% of CPE logic is devoted to failure detection and
correction in the baseline CPE design. This logic detects most
memory module failures in addition to those within the CPE. If the
EALU and ALU were non-redundant only 20% of CPE logic would be
devoted to failure detection and correction and CPE module com-
plexity would be reduced by 15%. However, simplex mode coverage
would fall to 76%.

4. Assuming 5 CPES are initially flown, the probability of different
numbers of CPE's remaining operational within a 5 year mission is
shown below both with and without arithmetic logic redundancy.

No. CPE With Without
Operational Redundant Arithmetic Logic

5 0.8300 0.8542

-4 0.9876 0.9909

-3 0.9996 0.9997

?2 0.99999 0.99999

4-31

TABLE VII. CPE FAILURE MODES

Failure/
Components Failing Result 106 Hr Corrective Action

Input mux or voter/ Triple-bit error 0. 043 Detect with H-P code-inhibit
switch output

Mem in, addr, data reg, Single bit error 0. 125 Detect and mask with H-P code
instr reg, output and ALU
muxes

Scratchpad memory Single bit error 0. 130 Detect with parity check-inhibit
(SPM), MQR output, est coverage 0.95

Arithmetic logic unit Multiple bit error 0.204 Detect by comparison of
redundant A LU outputs-inhibit
output

Exponent arithmetic Multiple bit error 0. 044 Detect by comparison of
unit redundant EA LU outputs

inhibit output

Microprogram ROM Control bit error 0. 125 Detect with parity check-inhibit
(MROM) output, est coverage 0. 9

Instruc reg and mux SPM or MROM 0. 031 Detect by comparison with mem
addr bit error input reg - inhibit output

Iter ctr, seq and mem Improper execution 0. 040 Detect in duplex, mask in TMR
access contr, BOSS status loss of sync simplex coverage = 0
and contr interface

Error detection logic False error 0.108 Inhibit output
indication

0. 850

NOTE: Coverage = 1.0 unless otherwise noted.

4-32

This means that only one or two spare CPEs need be flown over and

above the number required for use during the mission but that at

least one CPE failure may occur and ARMMS should be able to

accept it gracefully.

5. Duplication of CPE arithmetic logic seems justified in order to in-

crease simplex error detection coverage if a significant amount of

simplex operation is contemplated. Simplex coverage could be in-

creased further by adding additional control unit redundancy but this

is probably not worth the effort so long as a duplex mode is avail-

able. Increasing simplex error detection coverage also increases

duplex error masking.

6. Many missions could be well served without a TMR mode if 93%

processor error masking were acceptable rather than 100%.

7. When an error is detected the processor masks the error if

possible or else attempts a program rollback. If masking or roll-

back is successful the processor will not interrupt BOSS for fault

correction assistance until its task is completed.

4. 4.2 CPE Register Level Design

The CPE register level design is shown in Figure 10. This design was

assumed in the reliability discussions above. The dashed lines in the figure rep-
resent LSI partitions of Table VI. Referring to Figure 10, similarities can be

seen between CPE and SUMC since SUMC was used as a starting point. However,
the memory Input and Instruction registers are duplicated to allow for instruc-

tion overlapping; error detection logic, bus interfaces, voting logic and BOSS
status and control interfaces have been added, and the ALU-multiplexer struc-

ture has been simplified. At a detailed level radical changes are expected in the

structure of the microprogram read-only-memory and scratchpad memory and

in general the design has been simplified and streamlined to increase the proc-
essor's speed and ease error detection and correction.

The CPE microprogram read-only-memory organization is summarized

in Figure 11. Bits have been provided to implement all CPE micro and macro
instructions mentioned earlier in this section. Fields are included for multi-

plexer, scratchpad memory, ALU, EALU, hardware register, bus interface,
and sequencer control functions. This MROM differs from that of BOSS principally

in that the interrupt and timer control functions of the BOSS are not required and

MQR and Exponent Unit control functions are added. Each MROM word requires

46 bits plus parity and 256 words are provided reducing the memory to 15% of
the size of the one in SUMC and slightly larger than the one in BOSS which was

42 bits wide.

Figure 12 shows the CPE instruction and data formats. These are the

same as for the BOSS module except that in the CPE data words allow 32 bit

signed fixed point data, floating point data including 24 bits plus sign for mantissa

and 6 bits plus sign for exponent fields, and double precision fixed and floating

point data to be accessed by the CPE. The CPE instruction set shown in

4-33

Table VIE is close to that of BOSS with added arithmetic, floating point and
double precision instructions similar to those defined in MSFC document S&E -

ASTR-004 and the ARMMS Phase HI report plus instructions for communication

with BOSS.

Figure 13 shows the organization of the CPE scratchpad memory. It
contains 14 accumulators, plus 6 base, 6 bound and 3 index registers directly
accessible by the program. In addition a rollback program status word (RPSW)
and interrupt status word (IPSW) provide for program jumps on errors and

interrupts and six base registers provide for extended main memory access

when summed with an instruction displacement field. The RPSW, IPSW, and
Program counter are read accessible but not write accessible under normal

conditions. The index registers can be used as additional accumulators. Seven

of the accumulators can be specified by the MROM for use as working storage
during macroinstruction execution. The 2 sets of base/bound registers not con-

trolled by the base field of the instructions are used for testing instruction
fetches during program and subroutine branch instructions. The organization is

similar to that of BOSS except for the base and bounds registers.

4.4.3 CPE Interaction with BOSS

BOSS will command and interrogate other modules via a 2-way BOSS/
Module bus (BMB) as discussed in the BOSS description. Each CPE module will
contain bus interface logic as shown in Figure 14 allowing it to communicate
with BOSS. CPE module status words MSWs contain their BOSS assigned pri-
ority and stream assignment codes in addition to a 7 bit status code which in-
cludes the 2 bit hardware determined error code shown below and a 5 bit soft-
ware determined termination code derived from the processor's HALT
instruction's R3 field. The options for this latter code are shown in Table IX.

Error Code (2)

00 No Error
01 Memory Error
10 Processor Error
11 Undetermined Error

BOSS uses the CPE's code to determine which subroutine to branch to in response
to the processors status.

4-34

IEAU

MPBS (RED.) (REG) SCRATCHPADEXPONENTEXP. MEMORY
ARITHMETIC UNIT OO REG. 32 x 36

(RED.)
SPM

MEMORY ADDR.

MEMORY INPUT MEMORY INPUT SPM

39 39 32

NSTRUC.16 I NSTRUC. 16

UMULTIPLIER-
00 A 4 QUOTIENT REG.

,U -SMRT MULT.
HAMMING CHK PARITY

FiguG 1. M CP Fc
CTR. 5 U T/ VIC

L -- I I ROM ERROR

DETECTION
MEMORY SEQ. 256 x 48 LOGIC
ACC. CONT. CONTR. I

OUTPUT E PMBS

-- - - PARITY CHK

INHIBIT

-FAULTS IN OTHER CPE MODULES

SI BOSSSTATUS A
AND CONTROL BMB

INTERFACE I

Figure 10. ARMMS CPE Functional Block Diagram

SPM 5PM ALU SHFT EALU
ADDRESS R FORMAT ALU MUX MUX MUX A D I M S T SEQUENCE SEQ. XFER BUSS X MUX
CONT. C CONT. NT CONT CNT CONT. ADDRESS OPER. 0 M CONT.

I I I I I I I

0 READ 01 READ
1 WRITE 00 "0" 10 WRITE

01 SPM
000 BYTE NO. 1 10 FC BYTE LD EXP. REG. STROBE

001 BYTE NO. 2 11 1/2 SPM I0 EALU+
010 BYTE NO. 3 1 EALU
011 BYTENO.4 STRO1 EAU-
100 LOWER HW STROBE MDR 0 ERTOESPMMUX

101 EXPONENT STROBE IR

111 MANTISSA STROBE MQR 000
001 "1"

0000 R1 000 NO-OP INSTRUCTION START 010 MAR
0001 N2 001 A*B 011 MDR
0010 R2 00 A + B 0000 "0 TOGGLE OVERLAP ON "1" 0 MDR
0011 010 A 0001 "1 100 MRX

0100 BASE/BOUND 0 A 0010 MAR 000 NO OUTPUT 101 ER
0101 INDEX 0011 MDR 001 NO SHIFT

0110 RPSW 0 AB 0100 IR: R 1
BIT MASK 010 LEFT CIRC. BYTE

0110 RPSW 110 AB FTCRC.

0111 IPSW 111 M/D/SQRT 0101 IR : R 2
011 LEFT CIRC.1

1000 SPM4
0110 MC NT BYTELD 100 RGT. SH.BYTE

0111 RMCONT. BYTE LD 101 RT. SH1

1000 MR 110 LEFT SH. BYTE
1011 SPM7

1001 MR: DISPLACEMENT 111 LEFT SH. 1

1100 SPM15 1010 MR : EXPONENT
1011 MR : MANTISSA
1100 M/D/SQRT

1111 SPM1 8
1101 DERIVED EXP.

CODE FUNCT/TEST IR OPER IC OPER

0000 NORMAL *1 +0
0001 (SPARE)
0010 UNC. XFER -N +0
0011 COND XFER/FETCH EXIT -MDR +0
0100 UNC. LOOP +1 N
0101 COND LOOP +1 -'MDR
0110 (SPARE)
0111 (SPARE)
1000 TEST IC (LOOP SHFT CONT.) +0/-N --1 IF >0
1001 TEST IC (LOOP SHFT CONT.) +I/-N -1 IF >0*
1010 TEST IC (BYTE SHFT CONT.) +0/-N -8 IF >0
1011 TEST IC (BYTE SHFT CONT.) +1/-N -8 IF >0
1100 TEST ALU SIGN + 1/N +0
1101 TEST ALU OVERFLOW +1/-N +0
1110 TEST ALU NON -ZERO + 1/-N +0
1111 TEST IRP REG. +1/lN +0

'DECREMENT R
1
R
2

FIELDS OF IR AS WELL

Figure 11. CPE Microprogram Memory Organization

1. MEMORY REFERENCE INSTRUCTIONS: I9

BYTE NO. 1 - --- BYTE NO. 2 BYTE NO. 3 BYTE NO. 4

OP CODE (MROM ADDR.) R1ADDGEN.REG. R2 X B DISPLACEMENT

S I I I I I I I I I I I 1I I I

BYTES NO. 1, 2 GO TO INSTRUCTION REG.
ALL BYTES GO TO MEMORY INPUT REG. BASE REG. ADDR.

INDEX REG. ADDR.

2. SINGLE OPERAND INSTRUCTIONS: SEC. GEN. REG. ADDR. (LOC. 25 ... 31)

BYTE NO. 1 BYTE NO. 1 BYTE NO.2 BYTE NO. 3 BYTE NO. 4

OP CODE (MROM ADDR.) RDD(GEN. REG. R2 SHIFT CONTR.)

BYTES NO. 1, 2 GO TO INSTRUCTION REG. SEC.GEN.REG.ADDR.(LOC25 .. 31)
ALL BYTES GO TO MEMORY INPUT REG. SEC. GEN. REG. ADR. (LOC 25 .. .31)

3. LINK WORD FORMAT (2ND OPERAND)

BYTE NO. BYTE NO. 2 BYTE NO. 3 - -- BYTE NO. 4f II
DISPLACEMENT (ATOM LINK) DISPLACEMENT (LIST LINK)

I I
I II I I I I I I Ii I I I I I I

SCAR CD CDR

ALL BYTES GO TO MEMORY INPUT REG

4. DATA WORD (2ND OR THIRD OPERAND) - FIXED POINT

BYTE NO. 1 BYTE NO. 2 BYTE NO. 3 BYTE NO. 4

/I
S DATA

I I

ALL BYTES GO TO MEMORY INPUT REG.

5. DATA WORD (2ND OR 3RD OPERAND) - FLOATING POINT

BYTE NO. 1 BYTE NO.2 BYTE NO. 3 BYTE NO. 4

I MANTISSA S EXPONENT

0 1 2 3 4 5 3 6 4 7 8 9 10 11 12 13114 1516 1118 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 12. 'CPE Instruction and Data Formats

TABLE VIII. CPE INSTRUCTION SET

The CPE instruction set is derived from a subset of the BOSS instruction set

with the addition of more arithmetic instructions.

BOSS Instructions not Required:

LIT Load and Start Interval Timer

RSC Read System Clock Register

COM Command Module via BMB

INM Interrogate Module via BMB

SIM Set Interrupt Mask

Added CPE Instructions:

SRD Shift Right Double

SLD Shift Left Double

MPY Multiply

DVD Divide

SQR Square Root

DAD Add Double

DSB Subtract Double

FAD Floating Point Add

FSB Floating Point Subtract

FMP Floating Point Multiply

FPV Floating Point Divide

Total BOSS Instructions 58

Total BOSS not Required -5

Added CPE Instructions 11

Total CPE Instructions 64

4-38

0 (S) SCRATCHPAD -

1 (PD) PROG. DATA B
ADDR

2 (G1) GLOBAL DATA 1 RANGE

BASE REGISTERS (6)
3 (G2) GLOBAL DATA 2

4 (SR) SUBROUTINE

5 (P) PROGRAM MROM
ADDR.

6 (P)

7 (SR)

8 (S)
BOUND REGISTERS (6)

9 (PD) B
ADDR
RANGE

10 (G1)

11 (G2)

12 ROLLBACK PROG. STATUS WORD (RPSW)

13 INTERRUPT PROG. STATUS WORD (IPSW)

14 PROGRAM COUNTER (PC) MROM
-- ADDR

15 RANGE

R1 OR R3 -
ADDR. 16 LIST HANDLING WORKING STORE (4)
RANGE - (OR ACCUMULATORS)

17

18

19 R2
ADDR.
RANGE

20

21

22

23 PRIME ACCUMULATORS (10)

24

25

26

27

28

29 --

INDEX REGISTERS (3) X
30 (OR ACCUMULATORS) ADDR.

RANGE

31

32 BITS + BYTE PARITY

PROGRAM CAN ACCESS ALL LOCATIONS FOR READ, LOC. 15 ... 31 FOR WRITE.

Figure 13. CPE Scratchpad Memory Organization

4-39

INTERRUPT TO BOSS (
FAULT o

ERROR DETECTION
I CODE LOGIC

TERMINATION.

BOSS MO MODULE CODE
BUSS (REDUNDANT) STATUS

OUTPUT
GATES

GATES MODULE
STATUS
WORD
REG.

XMIT MSW COMMAND SEQUENCE
CONTROLILOGIC

LOAD ASSIGNMENT REG.
I 5BUSS RESPONSE
CODE, PRIORITY CODE)

UP-SAVE DATA AND
STARRESTOREDATA

I MODULE COMMANDS

CLOCK ACCESS
DECODE
LOGIC

SYNC

Figure 14. CPE Module Interface for BOSS Control and Status CommunicLtion

4.5 ARMMS IOP Register Level Design and Reliability Study

A register level design and reliability analysis have been completed for
the ARMMS IOP along with a study of IOP/CPE/BOSS commonality. The
ARMMS Executive software design described in this report requires an IOP with
capabilities far greater than the standard channel - control unit configuration.
The resulting IOP presents computing capabilities approximating those of BOSS,
less the reconfiguration and list processing features. Coupled to this minimal
computing element is the high-speed selector type channel that will support the
CVT Data Bus featuring a sixteen bit wide data path.

The channel and processing unit are combined to form the IOP sharing a
common interface to memory. The two units form a pair with the channel being
a slave only to its own processing unit through a system of interrupts allowing
concurrent processing and data transfer operations.

4-40

TABLE IX. PROCESSOR REQUEST COMMANDS

1. JOB SCHEDULE

2. JOB TERMINATE

3. JOB ABEND (may or may not be combined with job terminate)

4. JOB CANCEL

5. TASK SCHEDULE

6. TASK TERMINATE

7. TASK ABEND (may or may not be combined with task terminate)

8. TASK CANCEL

9. TASK STATUS

10. SYSTEM SUBROUTINE CALL

11. SYSTEM SUBROUTINE COMPLETION

12. LOCK VARIABLE

13. UNLOCK VARIABLE

14. GETMAIN

15. FREEMAIN

16. TIME OF DAY

17. WAIT CALL

18. EVENT SET

19. ALERT CALL

20...32 SPARE

4-41

The channel presents features over and above the standard selector
channel. Memory is protected during all transfers with a set of channel base
and bounds registers as well as those controlling the processing unit. An addi-
tional feature is the channel index allowing cyclic operation within the channel
program without intervention by the processing unit.

4.5. 1 IOP Commonality With CPE

The processing unit of the IOP is a subset of the CPE design providing
maximum commonality with the CPE. The channel, however, has less
commonality due to its nature as an interface rather than a processing unit.
Still, commonality is kept in 33% of the channel through use of comparable ALU
and scratchpad memory LSICs. Since the channel logic represents only about 33%
of the IOP total, the effect of special channel logic has less overall significance.
The information of Table IX shows the IOP having 45 LSI devices, 36 of which
are found in the CPE giving a 80% commonality with existing CPE logic.

4. 5.2 IOP Reliability Analysis

By operating the IOP in at least a duplex mode, failures in most IOP
logic will be detected including those in the ALU and control logic blocks.
Hamming and Parity logic is provided in order to check the main memory using
techniques common with the CPE and BOSS modules. Memories internal to the
IOP are protected by a parity system allowing testing for odd numbers of stuck
bits. Table X lists IOP failure modes and suggested corrective action. Fail-
ure analysis leads to the following results:

1. If an IOP is replaced at the end of a task in which it fails, and soft-
ware is capable of switching the IOP output to a redundant memory
port if the primary memory port fails, the IOP has the following re-
liability characteristics:

Logic Failure rate/106 hours :1. 065
Simplex mode coverage =59%
Duplex or TMR coverage =100%
Failures Maskable in Simplex :12%
Failures Maskable in Duplex =59%
Failures Maskable in TMR =100%

2. As with the CPE power supplies and bus interface electronics fail-
ure rates are less than 10% of the logic failure rate.

3. Approximately 10% of IOP logic is devoted to failure detection and
correction in the baseline IOP design. This logic detects most
memory module failures and more than half of those within the IOP.

4. Assuming 4 IOP's are initially flown, the probability of different
numbers of IOP's remaining operational within a 5 year mission is
shown below.

4-42

TABLE X. IOP FAILURE MODES

Failure/
Components Failing Result 106 Hr Corrective Action

Input mux or voter/ Triple-bit error 0. 064 Detect with H-P code-inhibit
switch output

Mem in, addr, data reg, Single bit error 0. 125 Detect and mask with H-P code
instr reg, output and ALU
muxes

Scratchpad memory Single bit error 0. 195 Detectwith parity check-inhibit
(SPM), MQR output, est coverage 0.95

Arithmetic logic unit Multiple bit error 0. 178 Detect in duplex, mask in TMR
simplex coverage = 0

Microprogram ROM Control bit error 0.125 Detect with parity check-inhibit
(MROM) output, est coverage 0.9

Instruc reg and mux SPM or MROM 0. 031 Detect by comparison with mem
addr bit error input reg - inhibit output

Iter ctr, seq and mem Improper execution 0. 040 Detect in duplex, mask in TMR
access contr BOSS status loss of sync simplex coverage = 0
and contr interface

Error detection logic False error 0. 108 Inhibit output
indication

Channel registers Single bit error 0. 099 Detect in duplex, mask in TMR
simplex coverage = 0

Channel control Improper execution 0.100 Detect in duplex, mask in TMR
loss of sync simplex coverage = 0

1. 065

NOTE: Coverage = 1. 0 unless otherwise noted.

4-43

Number of IOP' s Probability
Operational After 5 Years

4 0.8482

_3 0.9908

_2 0.9997

This shows that only one spare above the TMR Configuration need be
flown but the possibility of one failing is significant and the system
should reconfigure gracefully to accept this.

5. As with the CPE, errors are masked if possible or else program
rollback is attempted. Success of either will cause inhibition of
immediate interrupt to BOSS until task completion.

4. 5. 3 IOP Register Level Design

The IOP register level design is shown in Figure 15. It consists of two
basically independent units separated by the dashed line. Above is the proc-
essing unit capable of executing a stored program with a repertoire and struc-
ture similar to partition 'A' of the BOSS module. A slave to this unit is the
channel shown at the bottom of the Figure. It is capable of executing its own
channel program consisting of a string of I/O commands chosen from the channel
repertoire. The execution is begun at the command of the processing unit and
may continue concurrently with further processing unit operation. Both the
channel and the processing unit share a common memory interface on a cycle-
stealing basis with the channel having highest priority.

The processing unit shares similarities between both the CPE and BOSS
modules. In the system it performs as would another CPE in relation to BOSS.
However, the instruction set shown in Table XI is close to that of BOSS with
added I/O instructions. This reduces the processing unit complexity by elimi-
nating floating point and complex arithmetic instructions of the CPE. These
instructions are not used in I/O operations and their elimination greatly reduces
the IOP complexity while still providing efficient processing support.

The IOP instructions formats are identical to those of BOSS and CPE
with the addition of the special I/O instruction format. This is shown as F3 in
Figure 16 along with F1 and F2, the memory and register reference instruc-
tions respectively. These formats are identical to these used by the BOSS and
CPE modules.

The processor of the IOP is a reduced version of the CPE. Eliminated
are the exponent ALU and associated MUX' s, the multiplier-quotient register
and its multiply, divide, and square root logic, instruction - data look-ahead
registers, and redundant ALU. This results in a slightly modified MROM for-
mat as shown in Figure 17. The format control, ALU operation, and ALU MUX
control fields retain their width but the extent of code usage is reduced in the
IOP. The strobe MQR and toggle overlap bits are not required due to the ab-
sence of these features as are the last six bits of exponent strobe and MUX con-
trol. Added to the CPE format are the I/O request and interrupt controls pri-
marily used for requesting and responding to channel operations respectively.

4-44

MPBS

VOTER/

I SCRATCHPAD

32W x 368

MUX
MEMORY INPUT

REG 39

ARITHMETIC HIFT AM EMORY AODRES
LOGIC UNIT MUX REG 39

ALU BIT
MUX ERR 12,

-32 R MEMORY DATA0

IRMUX 16 ICMUX I

ACCESS HAMMING CHECKI CONTROL
INSTR O ITERATEN
REG PARITY OUTPUT INHIBIT O PMBPARITC EXEUDETECTION I A

ROM

SEQUENCE 256w x 498 BOSSSTATUS
TOALL CONTROL C- ANDCONTROL BMB

I. vLOCS INTERFACE
U EXCEPT

HANNELHANNELNUTCHANNEL INPUT - - - -------- - - - - - -
REG 39

SPM SPM DATA REG

MUX

BIT ERR
CORR

D REVICE CONTROLLERREFigure 15. ARMMS OP Func ARITHMETIC Block DiCHANNEL
UNIT - - - SCRATCHPAD

MEMORY
OW x 18B

DEVINT MEMORY COMMAND DEVICE
MUX INTERFACE EXECUTION INTERFACE

CONTROL CONTROL CONTROL
UNIT UNIT UNIT

CHANNEE g OT HAM CHANNEL OUTPUT

DEVICE INTERFACE MUX
REG 32 TOCHANNELTOCHANNEL TODEVICE

IN/OUTPUT WORKING ANDINTERF.

SWITCH

DEVICE CONTROLLER

Figure 15. ARMMS IOP Functional Block Diagram

TABLE XI. IOP INSTRUCTION SET

The IOP instruction set is derived from a subset of the BOSS instruction set
with the addition of I/O oriented instructions.

BOSS Instructions not Required:

LIT Load and Start Interval Timer

RSC Read System Clock Register

COM Command Module via BMB

INM Interrogate Module via BMB

List Manipulation Instructions

Added IOP Instructions:

SIO Start Input or Output

C LR Clear Channel

HLT Halt Channel

ICA Interrogate Command Address

IST Interrogate Status

Total BOSS Instructions 58

Total BOSS Not Required -8

Added IOP Instructions 5

Total IOP Instructions 55

4-46

MEMORY REFERENCE:

R1

Fl OP CODE (MROM ADDR) (GEN REG ADDR) R2 X B DISPLACEMENT

I I I I I I II I II I I 1 I I I I I I I I
00 07 08 12 13 15 16 17 18 19 20 31

BASE REGISTER ADDRESS

INDEX REGISTER ADDRESS

SECOND GEN REG ADDRESS (LOC 25 ... 31)

REGISTER REFERENCE:

R R3

F2 OP CODE (MROM ADDR) (GEN REG ADDR) R2 (GEN REG ADDR
1 OR SHIFT COUNT)

00 07 08 12 13 15 27 31

MASK/SECOND ACCUM ADDR

3RD ACCUM ADDR

I/O OPERATION:

F3 OP CODE (MROM ADDR)

00 07 31

Figure 16. IOP Instruction Formats

SPM T U S SEQUENCE SEQ. XFER INTR.

MDRESS RALU MUX MX MX A S NT. ADDRESS OPER CNT.

C NT. N T. T. OPERATION CONT. CONT. CONT.

I 00 NO-OP

0 READ 00 "0 01 READ

1 WRITE 01 SPM 10 WRITE

10 FC BYTE LD

11 1/2 SPM STROBE MARSTROBE MDR I/O REQUEST

000 BYTE NO. I STROBE IR

001 BYTE NO.2 INSTRUCTION START

010 BYTE NO 3 0 NO-OP
01 BYTE NO. 4 001 NOT USED

100 LOWER HW 10 LOAD INTERRUPT MASK
110 UPPERHW 11 CLEAR INTERRUPT

000 NO OUTPUT
001 NO SHIFT

0000 RI 010 LEFT CIRC. BYTE

0010 R3 000 NO-OP 011 LEFT CIRC.

0011 PC 001 A + B 100 RGT SH. BYTE

0100 BASE/BOUND 010 A - B 101 RGT SH. 1

0101 INDEX 011 B-1 110 LEFT SH. BYTE

0110 RPSW 011 B-A 0000 "0:" 111 LEFT SH. 1

0111 IPSW 100 AVB 0001 "1"

1000 SPM4
101 AAB 0010 MAR
110 A + B 0011 MDR

S0100 IR : R 1
BITMASK

1011 SPM7 0101 IR : R 2

1100 SPM 1 5
0110 ,Ro SSM BYTE LD
0111 CONT.BYTE LD
1000 MR DISPLACEMENT

1111 SPM18 ICODE FUNCT/TEST IR OPER IC OPER

0000 NORMAL +1 +0

0001 (SPARE)
0010 UNC. XFER -N +0
0011 COND. XFER/FETCH EXIT -MDR +0

0100 UNC. LOOP +1 -N

0101 COND LOOP +1 'MDR

0110 (SPARE)
0111 (SPARE)
1000 TEST IC (LOOP SHIFT CONT.) +0/-N -1 IF >0

1001 TEST IC (LOOP SHIFT CONT.) +I/-N -1 IF >0

1010 TEST IC (BYTE SHIFT CONT.) +0/-N -8 IF >0
1011 TEST IC (BYTE SHIFT CONT.) +1/N -- IF >0

1100 TEST ALU SIGN +1/-N +0

1101 TEST ALU OVERFLOW +1/-N +0

1110 TEST CHAN READY 1/N +0
1111 TEST IRP +1/-N +0

Figure 17. lOP Microprogram Memory Organization

(S) SCRATCHPAD

(PPD) PROG DATA
ADDR
RANGE

(Gl) GLOBAL DATA 1

BASE REGISTERS (6)
3 (G2) GLOBAL DATA 2

4 (SR) SUBROUTINE

(P) PROGRAM MROM
5 -ADDR

(P) RANGE

(SR)
7

(S)
8

BOUND REGISTERS (6) (PD) B
9 _ ADDR

(G1) RANGE
10

(G2)

12 ROLLBACK PROG. STATUS WORD (RPSW)

13 INTERRUPT PROG STATUS WORD (IPSW)

14 PROGRAM COUNTER (PC)
-- - MROM

15 ADDR
R1 OR R3 RANGE
ADDR
RANGE 16

17

18

19 R2
ADDR

20 PRIME ACCUMULATORS (14) RANGE

21

22

23

24

PROGRAM CAN ACCESS ALL
25 LOCATIONS FOR READ,

LOC 15 ... 31 FOR WRITE.

26

27

28

29

INDEX REGISTERS (3) ADDR
30 (OR ACCUMULATORS) RANGE

31 1
-32 BITS + PARITY

Figure 18. IOP Scratchpad Memory Organization

4-49

The IOP scratchpad memory is mapped according to Figure 18. This is

identical to the CPE scratchpad memory except for the absence of list handling
references since these instructions do not fall into the IOP repertoire.

Once initiated by the processor via I/O instructions, the channel executes
from a set of eight channel commands shown in Table XII. More than one of

these commands may be chained together forming a channel program. The com-

mands conform to one of three formats shown in Figure 19. The double word
commands each have an eight bit command code in the first word, and the re-

mainder of the word supplies the memory reference address if required. The
second word of the command presents a set of flags for controlling the mode of
execution, and count information for data transfers and Load Index. The second
word may also contain a status mask in the case of the Transfer On Status
command.

The need for special communication paths from processor to channel is
minimized through use of fixed core memory locations accessible by both units.
These locations are summarized in Figure 20 which shows the Command Address
Word (CAW) and the Channel Status Word (CSW). The former is generated by
the processor during I/O initiation while the latter is channel generated status
information. Particular bits of the status information are in standard form and
described below.

Figure 21 shows the organization of the eight words of channel scratchpad
memory used for efficiently storing bookkeeping data for the channel. Command
and data addresses together with their bases and bounds form the first six words
while the data count and channel index reside in the remaining two locations.

TABLE XII. IOP CHANNEL COMMANDS

The channel is capable of executing a chained channel program independent of the
IOP main program.

Channel Command Set; Format

INP Input Data F4

OUT Output Data F4

CNT Control F4

SNS Sense F4

TRS Transfer on Status F5

TRA Transfer Unconditional F5

TRX Transfer on Index F5

LDX Load Index F6

4-50

DATA REFERENCE: 9

COMMAND CODE I DATA ADDRESS

00 07 14 31

F4

F LAGS I DATA COUNT

S I I r/ II31
00 04 16

00 CHAIN DATA
01 CHAIN COMMAND
02 SUPPRESS LENGTH INDICATION
03 SKIP
04 PROGRAM CONTROLLED INTERRUPT

TRANSFER:

COMMAND CODE I/II" TRANSFER ADDRESS

00 07 15 31

F5I
FLAGS STATUS SELECT (TR, S ONLY)

00 04 16 31

LOAD INDEX:

I OMMAND CODE

00 07 31

F6

FLAGS K61* INDEX COUNT
I FLA I I I I I ID X TI I I I I I

00 04 16 31

Figure 19. I/O Channel Command Word (CCW) Formats

COMMAND ADDRESS WORD (CAW):

FIXED
LOCATION:

(72)10 DEVICE COMMAND ADDRESS

I I

00 07 15 31

CHANNEL STATUS WORD (CSW):

(64)10 COMMAND ADDRESS

00 15 31

(68)10 UNIT STATUS CHANNEL STATUS HALF WORD COUNT

I I I I I I I I I I I I I I I 1I I I I I I I I I I I I I

00 07 08 15 16 31

UNIT STATUS CHANNEL STATUS

00 ATTENTION 08 PROGRAM CONTROLLED INTERRUPT
01 STATUS MODIFIER 09 INCORRECT LENGTH
02 CONTROL UNIT END 10 PROGRAM CHECK
03 BUSY 11 PROTECTION CHECK
04 CHANNEL END 12 CHANNEL DATA CHECK
05 DEVICE END 13 CHANNEL CONTROL CHECK
06 UNIT CHECK 14 INTERFACE CONTROL CHECK
07 UNIT EXCEPTION 15 CHAINING CHECK

Figure 20. lOP Fixed Memory Control Word Formats

0 COMMAND ADDRESS (132K FULL WORD)

1 DATA ADDRESS (256K HALF WORDS)

2 DATA

-BASE REGISTERS (2)

3 COMMAND

4 DATA

BOUND REGISTERS (2)

5 COMMAND

6 DATA COUNT (64K HALF WORDS)

7 INDEX (16 BITS)

-18 BITS + PARITY I

Figure 21. Channel Scratchpad Memory Organization

4. 6 SUMC LSI Module Study

A study to assess the applicability of the existing SUMC LSI Module set
to ARMMS and of ARMMS reliability enhancement techniques to SUMC has been
performed. Three approaches to adding controlled redundancy to increase a
SUMC computer's life time are available:

1) Use redundant SUMC processors and main memory units with voters
and/or comparators provided at unit outputs.

2) Apply redundancy and error coding at the LSI module level by adding
additional LSI modules but minimizing changes to existing modules.
or,

3) Apply redundancy and error coding within the LSI modules.

In the CPE Register Level Design topic of this report alternative 3) was
followed with no restrictions being assumed on the logic due to other SUMC re-
lated efforts. This approach has led to an efficient reliable logic design for an
ARMMS processor. However its LSI modules are not compatible with existing
SUMC LSI modules and it is useful to assess the cost to ARMMS in terms of re-
liability and performance of establishing commonality with the SUMC modules.

Alternative 1) above is the traditional approach to reliability enhancement.
It has been applied to whole computers by comparing I/O signals or to processors

4-53

and memories by comparing outputs of redundant units within a single computer.
This method requires at least an 100% increase in complexity for detection and
a 200% increase in complexity for real-time correction of erroneous computa-
tions. The exact increase would depend on the complexity of the voter/
comparitor units over and above the duplication or triplication of the processors
and memories. It is comparatively simple in terms of design and would require
minimum change to the existing SUMC processor but it is costly in terms of
total hardware complexity.

Alternative 2) becomes attractive if it is possible to detect or correct
most unit errors using less redundancy within a unit than would have been re-
quired to duplicate that unit. As might be expected some portions of a proc-
essor are more amenable to error isolation than others. A major objective of
this study is to suggest specific techniques and associated complexities for
error isolation in each section of SUMC's architecture. It is expected that the
trade-offs as to how much error detection and correction logic would be placed
inside a processor would be mission dependent and that in an ARMMS computer
where simplex, duplex and TMR processing modes are available it would not be
necessary to detect all possible errors within a single processor since programs
requiring this degree of detection could be run in a duplex or TMR mode.

In addition to the trade-offs between adding controlled redundancy and
redesigning modules vs adding modules or units it is necessary to perform trade-
offs between alternate ways of performing required functions since some
mechanizations require either less hardware or hardware in which errors are
more readily isolated. A reliable design should first attempt to minimize each
unit's failure rate by minimizing its complexity for a given level of performance
and second attempt to maximize the percentage of errors that can be detected if
they occur, assuming that the computer is considered to have failed if it either
cannot perform a required computation correctly or unknowingly performs an
erroneous computation in a critical program.

SUMC consists of 5 major building blocks: 1) The Scratchpad Memory
(SPM), containing 64 words of 32 data bits each, includes general and floating
point registers, program status information, and working and mask registers
used for program instruction execution; 2) the Arithmetic Logic Unit (ALU),
presently consisting of three multiplexers and two parallel arithmetic units in-
cluding fast carry logic, selects data sources and performs required logical or
arithmetic operations; 3) the Multiplexer-Register Unit (MRU), consisting of
three multiplexers and three registers, is used to transfer data from the ALU
to the SPM or to the main memory modules and to retain the results of inter-
mediate microinstructions during microprogram execution; 4) the Floating Point
Unit (FPU), consisting of a 32 bit multiplexer, an 8 bit Exponent Arithmetic
Logic Unit (EALU), and an 8 bit Exponent Register (ER), is used for the solu-
tion and normalization of floating-point operations; and 5) the Control Unit (CU)
decodes program instructions and provides the ALU, SPM, MRU, and FPU con-
trol signals required for their execution.

The major units within the CU and their functions are: 1) the Instruction
Register (IR) which holds the instruction being executed; 2) the Instruction
Address Read-Only-Memory (IAROM) containing 256 words of 22 bits each,
which is addressed by the executed instruction's operation code and whose output
provides the starting address for the microprogram which must be executed to

4-54

perform that instruction and format control information associated with the

instruction; 3) the Sequence Control Unit (SCU) which addresses the Micropro-
gram ROM (MROM) and contains a loadable iteration counter and a MROM

address register/counter whose contents are modified during microinstruction

execution to provide microprogram sequencing; and 4) a MROM, having
1024 words of 72 bits each, contains the prestored sequences of microinstruc-

tions required to fetch and execute program instructions, initiate IOP and main

memory accesses, and respond to external interrupts.

SUMC functional units overlap LSI module boundaries somewhat. The

ALU and SPM represent groups of ALU and SPM modules. The MRU modules

accomplish all MRU functions plus IR and ER functions. The FPU is made up of
Floating Point multiplexer modules plus ALU and portions of MRU modules.
The CU is made up of Sequence Control Unit, Function Control Unit, and Data

Control Unit modules plus groups of IAROM and MROM modiles.

Four methods of enhancing SUMC reliability, both for ARMMS and in

other applications have been investigated: 1) There are several areas where it

should be possible to reduce SUMC complexity without significantly reducing
performance; 2) Failures in about 70% of SUMC logic can be detected through
the use of coding techniques at an increase in complexity of about 10% in this

portion of the SUMC logic; 3) Failures in the remaining SUMC logic can also be

detected but this requires increasing these portions of the logic by over 100 per-
cent; 4) Hamming codes and voter/switch techniques in conjunction with spare
modules can be used to detect and/or correct failures in the SUMC computer's
main memory unit and in the portions of SUMC logic not covered in 2) above.

Figure 22 shows a block diagram of the SUMC processor with error detection

logic added. The cross-hatched blocks are the ones in which errors can be
easily detected. The floating point multiplexer also falls into this category
during fixed point instructions (i. e., when it is simply used for transferring
fixed point data).

4. 6.1 Speed Enhancement Through Modification of SUMC Logic

An evaluation of the speed limitations of SUMC in ARMMS determined
that the biggest speed bottleneck is likely to be the SUMC logic itself. Assuming
either low-power MSI Schottky TTL (1973 time frame) or projected LSI CMOS

using a silicon on sapphire technology (in the late 70' s) maximum microinstruc-
tion clock rates would be on the order of 4 MHz. Data bus transmission from
main memory to processor would be accomplished at twice this rate and main
memory cycle times on the order of 800 nsec should be easily attainable at low

power using plated wire techniques - hence these two areas should not be a prob-
lem. Using these numbers, the average instruction requires 3. 5 Asec to exe-
cute (examples: Add z 3 jisec, Divide z 9.5 lisec, jump = 2 sec).

An average speed increase of from 30 to 40% can be achieved by instruc-
tion overlap - i. e., fetching the next instruction while executing the present
instruction thus saving memory access and bus transfer time. In the best case
two overlapped cycles correspond to one non-overlapped cycle and a program
can be executed twice as fast as before. This occurs when a program consisting
of short instructions such as LOAD and ADD is accessing a memory with no con-
tention from other programs. The worst cases occur on JUMP instructions,
STOREs of data generated in the immediately preceeding instruction, or when

4-55

RCITREGISTER POINT
LOGIC UNIT (ER) MULTIPLEXER

ENCODING (EALU) (FPM)

M^.IN G
NOIT 1n P T 1

(MMU)

FAULT OUNIT (MRU)

INDICATION VOTER/SWITCH

PRODUCT PRODUCT
MULTIPLEXER ADD/SUB UNIT REMAINDSERE REAinDER

EXTERNAPPREGISTER MULTIPLEXER

INTERRUPT (I A)i I ADDRESS S

ALU I I I iMULTIPLEXERRE STE

SARITHMETIC SUMC) CM a tR
LOGIC
UNIT

INSTRUCTION (ALU)

SEQUENCER ONLY MEMORY MULTIPLY
CONTROL UNIT p IAROM) i UOT IENT

I trc 256 WORS t:ii o o MULTIPLEXER R S:MGM)
(

PhaseI I rp

- IN CATION
TREAD ONLYA ENCODER

SMEMO RY

S1024 ORDWORDS

CONTROLLOGIC
AND TIMING

CO N TROLICLT OC CONTROL LINES BLOCKS INDICATE LOGIC COVERED BY
"NIT TO ALL UNITS ERROR DETECTION CODES

Figure 22. Modified SUMC CPE Block Diagram

two programs both consisting of short instructions are in heavy contention for
the same memory page. In these cases overlap becomes ineffective and the
program runs at the same speed as it would have without overlap. The average
speed increases noted have been verified by computer simulations performed by
Don Taylor of Computer Sciences Corp. These speed increases allow reducing
the average instruction execution time to 2. 5 psec at a 4 MHz microinstruction
clock rate.

Instruction overlap logic should amount to about a 5% increase in com-
plexity for ARMMS including increases in both the SUMC CPEs and the main
memory modules. The added logic requirements include:

i. Logic to inhibit overlaps on JUMP and some STORE instructions.
2. Duplicated instruction registers to allow push-pull MROM access.
3. Memory address and data buffering.

Instruction overlap timing was discussed in detail on page 2-27 of the ARMMS
Phase II report.

4-56

4. 6. 2 Reliability Enhancement through Modification of SUMC Logic

Once an instruction has been fetched it must follow the critical path
shown in Figure 23, during the execution of each microinstruction step. Note

that two adders are included in SUMC to speed up multiply, divide and square
root operations. If only one adder were included in SUMC rather than the

present two, the hardware would be reduced by about 10% (by 6 LSI modules or

1320 equivalent gates) and the clock rate could be increased by about 25% due to

the decreased propagation delays, speeding up all operations except Multiply (M),
Divide (D) and Square-Root (SQR) by 25%. The M, D, and SQR instructions

would require approximately 70% more micro instructions than they do presently,
hence they would take 26% longer to execute than presently. However, except
for programs requiring large numbers of M, D, SQR operations, SUMC' s speed
would show a net increase (5% if all instructions are assumed equally likely to be

executed). Only for programs with more than 25% multiply, divide, square-root
instructions would any speed reduction be noted. These operations typically
make up no more than 1 to 7% of an instruction mix and even tasks such as
matrix inversions require only a 15% mix of these instructions. Removing one
adder also reduces the amount of redundancy needed in the system since adders

cannot be checked using the same error detecting/correcting coding techniques
proposed for the rest of ARMMS and hence require duplication and comparing of

outputs if their failures are to be detected. For these reasons the use of only
one adder in SUMC is recommended.

A similar argument can be made for the floating-point multiplexer struc-
ture (with the exception of the operand and exponent encoders) which is necessary
only for floating-point instructions and whose functions could be performed
serially by SUMC's multiplexer-register module, slowing these instructions by

DATA & CONTROL I I ER

CONTROL

MAR DATA
TO

MEMORY

MQR (FUTURE)
CYCLE

25 40 30 15 50 50 15 25 ASSUMED
DELAYS & POWER ARE AS FOLLOWS: DELAY NSEC

MROM [SN'541871 32W
SPM [SN5489] 12W
ALU [SN54LS181] LOW POWER SCHOTTKY WITH HI-POWER

SCHOTTKY LOOK-AHEAD LOGIC 2W
OTHERS [SN54LSXXX] LOW POWER SCHOTTKY 8W

TOTAL 250 NSEC 54W

CMOS LSI SHOULD HAVE SIMILAR RATINGS BY LATE 70s.

Figure 23. Critical Path Through Baseline SUMC

4-57

an average of 20%. The reduction in the number of gate delays could again allow
increasing the flock frequency yielding a net increase in speed as well as a 5%
reduction in SUMC complexity (3 LSI modules or 712 equivalent gates). It is
important to note that these two changes reduce the complexity of the portion of
SUMC logic in which errors are costly to detect by over 50%.

Roughly half of SUMC' s complexity lies in its internal semiconductor
ROM's and SPM' s. Hence serious consideration should be given to reducing the
size of these memories in missions where this is possible. Use of firmware
interrupt routines not requring 4 separate sets of SPM registers could reduce
the SPM size. It was possible to reduce the word length in the ARMMS CPE's
MROM by 33% without sacrificing performance. It should also be possible to
implement a reasonable instruction set in fewer than 1024 MROM words. If
256 words or less are adequate for the MROM and system 360 machine language
code compatibility is not required, the IAROM could also be eliminated with the
MROM addressed directly from the instruction register. In the ARMMS CPE
these changes resulted in a 75% reduction in semiconductor memory chip count
(21 LSI modules) assuming a ROM size of 4096 bits and a SPM size of 256 bits.
Even a less drastic reduction should improve SUMC reliability.

4.6.3 Enhancing SUMC Reliability Through the Addition of Error Detecting Codes

Since parity tests that are valid after shift operations can be constructed
relatively simply it is possible to detect all odd numbers of errors in SUMC's
semiconductor memory modules, and multiplexer-register unit modules, and
about 40% of the failure modes of the floating-point multiplexer modules (if the
latter modules are retained). The logic to accomplish these checks requires
adding approximately 1100 gates in four additional LSI modules to SUMC. These
added circuits detect errors in 40 current SUMC modules or in about 70% of
SUMC's total logic (or in 15 modules or 62.5% of SUMC's total logic if the
changes suggested in the previous section were implenented). However no
changes are required to present SUMC LSI modules in order to add these tests.
Parity is encoded at the output of the ALU and is tested at the output of the
floating-point MUX during all fixed point operations, and at the outputs of the
SPM, MROM, and IAROM modules.

Parity checks on the IAROM, MROM, SPM and IR of Figure 22 are
straight forward and will not be illustrated here. A number of exclusive-OR
gates equal to the word length of these four memories and registers (152 bits)
is required to perform the parity checks. All odd numbers of errors in each
memory or register will be detected.

The operation of the parity encoder for the MRU of Figure 22 is described
in Table XIII. The parity bit associated with the PRM is derived from an appro-
priate subset of the 36 bit ALU output depending on which shift function the PRM
is performing. The parity bit for the MAM is normally obtained by adding mod-
ulo 2 the MAR bits included in the present MAR parity bit sum, but excluded
from the new MAM parity sum by the designated shift operation, plus any new
ALU bits shifted into the MAM output to the present MAR parity bit. The only
exception to this is when the nonshifted ALU output is selected by the MAM. In
this case the parity sum consists of the ALU output bits. The parity bit for the
MQM is obtained in a similar manner to that for the MAM parity bit with the

4-58

TABLE XIII. MRU PARITY ENCODING CONTROL TABLE

PRM: D(N+4) 1 D(N+4)s D(N+2) D(N+1)1 D(N+l)s D(N) D(N-1) 1 D(N-l)a D(N-4)1 D(N-4) a

ALUMs B
X X X X

ALU MSB x x x x

ALUMSB+l X X X X X X X

ALU MSB+ 2 , 3 X X X X X X X

ALUMSB+4... ISB-4

ALULsB 3 X X X X X X

ALULSB-3...-1 x X X X X X X X

ALULSB X X X X X X

ALULSB+1 X X

ALULSB+ 2 ... 4

MAM: B(N+4) B(N+2) B(N+1) B(N) B(N-1)1 B(N-1)5 B(N-4) 1 B(N-4) s ALU

MARMSB+ 0 . .. 3+P MAR X X X X X X X X

MARLSB-3 .- 1
X X

MARLsB X X X X
MARB x x x x

ALU2 8 ... 30
X

ALU3 1
X X

ALU32
X

ALU33
X X

ALU3 4 , 3 5
X X X

ALU

MQR: R3 (N+1) R3 (N+1) R3 (N+4) PRM

MQRMSB X X

MQRMSB+l X

MQRLSB-3... -0 X

PMQR X X X

PRM x

X indicates bits to be added to parity check sum. Notation is from description of MRU in MSFC

document S&E-ASTR-C-005.

4-59

sum consisting either of the MQR parity bit plus excluded MQR data bits or of a
transfer of the PRM parity bit depending on the selected multiplexer outputs.
The parity encoder logic contains holding flip-flops for the added parity bits
clocked by the same signals that clock their associated MRU registers. No
access is needed to internal signals on the MRU modules so the parity encoder
module can simply be added to SUMC with no changes in the existing logic. If
silicon-on-sapphire CMOS logic is used and all encoder logic is placed on one
module, logic propagation delays through the encoder should not be significantly
greater than those through the MRU since most logic propagation delays in this
case would be associated with inter-module lead capacitances rather than with
individual gate delays. Total circuit complexity is 342 equivalent gates;
69 external connections are required.

ROM parity is encoded when the ROM' s are designed. SPM data always
comes through the MQM and MQR register and is encoded as described above.
Data going to main memory is Hamming-plus-parity encoded upon entering the
memory. It is then stored in the memory where it is retested prior to trans-
mission to the IR. Hence if a parity error is discovered in checking the IR it
can be attributed to sources within the processor unit with a high probability.
Data in the MAR or PRR may be reused within the processor without going to
the main memory unit. The most effective place to check the parity of these
registers is at the FPMX module output on operations where the FPMX is not
performing a floating point data normalization, (i.e., on virtually all processor
microinstruction steps). Making the check at this point also tests for correct
fixed-point operation of the FPMX, checking for stuck-on "1" faults of floating
point gates and stuck on "0" faults of fixed point gates within the multiplexer
and catching about 40% of floating point multiplexer module faults. A method for
testing for the remaining FPMX failure modes, which would generally show
up only during floating point instruction execution, is described in the next sec-
tion but for many applications the more limited check or the elimination of the
FPMX as discussed in the previous section could be the preferred alternative
due to the high cost of a complete check. The logic for performing the parity
check on the FPMX output requires 128 gates. This logic plus the IR and semi-
conductor memory parity checkers could be partitioned onto three identical LSI
modules, each having dual 33 bit parity checkers and using 256 gates and 70 ex-
ternal connections. The 90 bit wide MROM + IAROM check would involve all
three modules.

4. 6. 4 Enhancing SUMC Reliability Through Adding Selective Redundancy

It is possible to detect failures in much of the remaining third of the
SUMC logic not covered by the circuits mentioned above. However, the com-
plexity of the checking logic will equal or exceed the complexity of the logic
being checked and hence the decision on whether or not to add portions of it
should probably be made mission dependent, i. e., how reliable does SUMC have
to be and for how long? What fraction of possible errors require real-time on-
board detection? Will redundant processors be used as well as intra-processor
redundancy ? Fixed and floating point ALU modules account for approximately
20% of SUMC complexity. The most reasonable method for checking them is to
duplicate them and compare their outputs since coding techniques that are in-
variant under both logical and arithmetic operations and that do not slow down
the processor are at least as complicated to implement as the duplicate and
compare method. If two exclusive-OR gates are added to each ALU module,

4-60

duplicating and comparing ALU outputs simply doubles the number of SUMC ALU

modules. In terms of equivalent gates this adds 2816 gates to SUMC, a 106% in-
crease in ALU complexity. There might be a modest processor speed reduction

due to the addition of an additional on-off module delay in the signal path. If the

ALU' s could not be changed, two new identical comparator modules would be

needed having 68 external connections and 88 equivalent gates apiece; an ex-

tremely inefficient arrangement constrained by pin limitations.

A parity-based checking method for detecting all floating-point MUX

errors, with the exception of those in the operand and exponent encoder sections,
has been designed using 576 gates assuming partitioning onto two identical LSI

modules each having 288 gates and 75 external connections. This covers 80% of
FPMX failure modes - in effect protecting 356 gates over and above those pro-
tected by the basic parity check of the previous section, a 162% overhead for
error detection for those gates. This is better than duplicating and comparing
outputs which would require 840 extra gates, a 236% overhead, but worse than

doing the FPMX function in the MRU modules as suggested previously. The

operand and exponent encoders and the exponent register need to be duplicated in

any case, on an additional 271 gate module including comparison logic for the

exponent encoder outputs. This module replaces the MRU module presently
used for the SUMC exponent register.

The FPMX parity check circuits operations are described in Figure 24
which shows which FPMX input bits will appear in the FPMX output during
different shift operations. The symbol m indicates that the most significant
32 bits of the shifted input are selected, i indicates that the least significant
32 bits are selected - both with single precision input selection, for double pre-
cision both the md and the m, or the Rd and the 2 inputs are selected. The

parity check logic adds FPMX input bits not appearing in the FPMX output to
FPMX output bits modulo 2 and compares this sum containing all PRR bits and/or
all MAR bits depending upon the FPMX operation with the appropriate parity
bits for these two registers to test for possible errors.

ALU and floating point MUX tests raise the probability of error detection

given an error in SUMC to about 95% but requires 4 times as much error correc-
tion logic as detecting 70% of the failure modes does. The remaining SUMC
logic performs control functions and is of a very random nature and hence
difficult to test efficiently for errors. A brute force approach where all SCU,
FCU and DCU module functions are duplicated and compared at module outputs
would require 96 comparisons to be made and represents an upper bound on the
complexity for checking these modules. This approach would probably involve
redesigning the 3 modules to include comparisons between duplicated modules
as in the case of the ALUs since use of external comparator gates would quickly
run into pin limitations. The overhead for fault checking could average 157% for
this logic. If only a partial check were performed the cost could be reduced.
For example, the overhead for checking the SCU module is 125%.

4.6.5 Summary and Recommendations

Proposed modifications to the SUMC design to adapt it to ARMMS require-
ments include: 1) incorporation of voter/switch and replicated memory bus
interfaces to allow processor operation in simplex, duplex, and TMR modes with
ARMMS memories; 2) addition of parity check networks to detect faults in internal

4-61

alqtL 1o''-uo : ' 3:aq: "!Jtd Wad -tZ a...d

NOI.VNVIdX3 NOIIVION OI 1X31 33S

pf Pi Pi p Pi pg pg P p
u

.p.i. p.. J p. p. p. p.. 99130S id

pi Pj P P i pi Pi Pi Pp p P P. P. pw P.Y I PI P. P.I P. S 0 +4w g d 9,9i W14 1 65 '9* m
w
YQdl

P1 P P1 P P P pi P p1 p
w

pu pW PW p.J pt pu p .I3d

Pi Pi Pp pg pg pg Po P. PS pu. P) pPu p.. pP pP. pd

-- -- ---- --P-
Pi pg Pp Pg P1 Pj P. P. p.. P p P

w
p. p. p. p. p"T 'w

pi pg Pi Pi i Pi Pi PI P1 p .. p .. p..P. p.. p.. p.. p.. p.. -W'P MA~W

013d

y P i P i P o P i P Il P | i p p. p .. p. .. p. p6. p ' 6 N

6w w9 + q
u

,w d.

Od~

01:W

Ez '0Z + qsw Wd

P| P Pg pg pg pg p P p.. p. .p... p. p up.. p... p.. 6otd £1 9 I98pI

PI I I P I I I I I PI I uJ Pu w w u w put Pur I '9 + qs IId |u)

tu ww w
93d: -1'0 * qs- -d-

II
I i I 5 5 5 P PP UPIP

cl~d

1_ + P .W d A

5 5 5 I 5 5J u5 5U U P.P.P U P.P P.611PGO.

C '0 + qsw tdJ

I
S-IOUI.N03 13d

9-NI -9 5 5 5 P. P -N bN +NN1+ 9P+N 0 041 VG.+N 8Z+N Z+ 91+N 0 .9 + = dO. 11 S

038

5 1 l 1 1 3 5 -V P.- 9 P 1-N
£0. 0" =t+w 09-N8= "s"s-

I 000

09-N 91-N 01- PP- PP- PPN 9£N 0-N 0-N 9-N £-N 1-N£1-N 9-N -N PPN PPN£1.N 91.NOOP P£. P£P Z£N 9EN O.N P.N P.N 1.N OPNO9PNP9.1 = 80 .dIH

11110~II II I 011 101 001 11010 011 101 001 1110 010 1010 000 110 010 100 00 11 11 01 011101001101001111010 00 00 00 01 L1'
U -- --- ---- ------ --- ---- --- ---- --- --

memories, and in most registers and multiplexers; 3) control of timing from a

central clock to assure synchronism during duplex and TMR operation; 4) addi-

tions of BOSS interfaces for assignment control and power switching; 5) MROM
and logic modifications as necessary to enhance processors speed and relia-
bility and minimize complexity.

Table XIV breaks down SUMC complexity by functional blocks and lists

the cost of fault detection to each block in number of gates for both the baseline

SUMC and the simplified version of SUMC suggested in the second section of
this report. Figure 25 shows the relationship between increasing fault detection
coverage and adding redundancy for these two versions of SUMC.

The ARMMS CPE baseline's coverage vs complexity is also shown for

comparison. Note that the complexity reduction measures discussed in this re-

port allows a 50% reduction in SUMC failure rate over a wide range of coverage
trade-offs, when compared to a baseline SUMC with an equivalent amount of
added redundancy.

TABLE XIV. SUMC COMPLEXITY BREAKDOWN

Baseline SUMC Simplified SUMC

Fault Fault
Detection Detection

Module No. of Gates Gates No. of Gates Gates

MROM* 4500 750

IAROM* 500 0

IR 200 (9260) 1078 200 (3654) 1078

SPM* 2000 1000

MRU 1704 1704

FPMX** 356 0

ALU/EALU 2640 2816 1320 1496

FPMX/ER** 564 804 208 228

SCU/IC 255 319 255 319

CLT 417 737 417 737

Total 13,136 5754 5854 3858

*4096 Bit ROM and 256 Bit SPM modules estimated equal in complexity to a
gate chip having 250 gates.

**See text for breakdown of assumed FPMX failure modes into two categories.

4-63

FAULT DETECTION 500 1 COVERAGE

O -- ARMMS CPE BASELINE

COMPLEXITY REDUCTION PLUS 0.8 DETECTION ONLY

FAULT DETECTION

0 = PARITY CHECKS

0 =0 + ALU REDUNDANCY 06-

0 = + + FPMX REDUNDANCY

(= = + + +SCU REDUNDANCY

0 =O + + + (+ CLT REDUNDANCY 0.4-

0.2-

FAILURES/10
6

HRS

1.0 SUMC 1.5

40 60 80 100 120 140
RELATIVE COMPLEXITY

Figure 25. SUMC Fault Detection Summary

Note also that while an ARMMS CPE based on SUMC building blocks can
achieve reliability improvement comparable to the ARMMS baseline only through
the redesign of some SUMC modules, a SUMC processor can be made signifi-
cantly more reliable with minimum redesign. The amount of redesign required
would depend on the stringency of a particular mission's requirements. All of
the alternatives listed require substantially less complexity than that for dupli-
cation of complete processors. The failure rates shown in the diagram assume
the ARMMS gate failure rate of 10-10 failures/hr/gate for late 1970's CMOS SOS
LSI logic. New LSI modules recommended for addition to the basic SUMC LSI
module set for reliability enhancement are listed below. It appears that a ma-
jority of SUMC failure modes can be detected and ARMMS reliability enhancement
techniques applied while using the basic SUMC LSI module set plus these addi-
tional modules. However serious consideration should be given to simplifying
SUMC ALU, FPMX, SPM and ROM modules if failure modes are to be
minimized.

ADDITIONAL SUMC MODULE RECOMMENDATIONS

No. Needed Description Pins Gates

3 Parity Checker 70 256

1 MRU Parity Encoder 69 342

1 Hamming Encoder 40 224

4. 7 A BOSS-Less Version of the ARMMS Computer

A major objective of the ARMMS Computer study has been to achieve a
modular design which allows for a family of highly reliable computers in a wide
range of configurations suitable to a wide range of space missions. It is ex-
pected that some missions requiring ARMMS reliability will not require the high
computational capacity provided by ARMMS multiprocessing and that a simpli-
fied version of ARMMS without multiprocessing would be a desirable member of
the ARMMS family of computers. This report describes the system design of
such a computer.

In ARMMS, executive functions including program dispatching, interrupt
handling, and reconfiguration control are centralized in the BOSS module which
is operated in the TMR mode for maximum reliability. In addition BOSS has
non-processing functions such as power and timing control and distribution. If
either the multiprocessing or the reconfiguration (simplex, duplex, and TMR)
requirement were dropped from ARMMS the BOSS processing functions could be
handled by the CPE modules although the non-processing functions would still
need to be centralized. The Hughes H-4400 computer is an example of such a
simplex multiprocessor.

In the full version of ARMMS BOSS' es dispatching of programs to the
various processors requires dynamically varying the assignments of each physi-
cal processor module between simplex, duplex, and TMR modes as a function of
program execution requirements. This takes up a considerable portion of BOSS
time but is practical with a BOSS processor in the system. However if this job
were done by the CPEs in a duplex or TMR configuration computation would be

4-65

slowed significantly and if it were done by a simplex CPE with error detection
coverage less than unity undetected erroneous operations might result compro-
mising ARMMS reliability objectives. However if all simplex programs are
actually assigned to simplex streams, all TMR programs to TMR streams, etc.
reconfiguration is decoupled from the dispatching problem and multicomputing
is possible without either the dispatching inefficiencies or the potential relia-
bility degradation noted above and without the requirement for a BOSS processing
capability. Program dispatching and external and I/O interrupt handling are
distributed among the CPEs. Fault interrupts and reconfiguration around
failed modules are handled by hardwired logic added to the other non-processing
functions retained from the simplified BOSS module. The resulting module is
called mini-BOSS and is expected to have no more than 20-25% of the complexity
of a BOSS module containing a processor.

If ARMMS IOPs are connected one-to-one with CPEs, as in the ARMMS
full-processing stream concept, no processing capability would have to be in-
cluded in IOPs of a non-multiprocessing version of ARMMS simplifying these
modules by 50-60%. This capability was originally included to reduce the proc-
essing load on BOSS while retaining a centralized I/O processing capability.

So far the only change to ARMMS capabilities by eliminating BOSS and
I/O module processing is to change the second "M" in ARMMS from "multi-
processor" to "multicomputer. " It is instructive to see what multicomputing
costs as an option and consider a mission dependent choice between a multi-
computing BOSS-less ARMMS and a BOSS-less ARMMS having a single recon-
figurable stream. Principally the single stream reconfigurable computer
requires only an active/inactive indication from mini-BOSS to each module in-
stead of a stream assignment code saving approximately 4% in overall system
logic complexity by reducing mini-BOSS storage and control lines to and assign-
ment decoders in other modules.

If a global memory capability is required for multicomputing so that the
streams can talk to one another, memory access control logic very similar to
that for a full ARMMS configuration is required adding approximately 2% to the
overall system logic. In addition the processors must include an instruction
similar to the TEST AND SET found in IBM system 360, and 370 computers to
provide for global memory access control since with no BOSS processor dy-
namic access control by means of base and bounds registers is not possible. It
should be noted that global memories while convenient present a potential relia-
bility hazard in that the access control method proposed only works if it is
used - i. e. there is no protection involved if a program accesses a restricted
location in memory either willfully or due to an undetected malfunction in the
simplex mode. Memory protection using a lock and key approach could be em-
ployed but then a simplex processor could restrict access to the wrong set of
locations due to a malfunction. Since the cost in complexity and the probability
of a malfunction due to multicomputing with global memory access are both small
this might prove to be a useful option for many missions but it is not regarded as a
required characteristic in a minimal ARMMS computer since there might be no
requirements for one stream to communicate with another and if there were
communications could take place through the IOP's rather than through the
memories if necessary.

4-66

4.7.1 System Level Changes for a Boss-Less ARMMS

Aside from the optional status of global memories there are two other

system level changes for a BOSS-less ARMMS. First while status and control

communication between BOSS and other modules was via a BOSS to Module Bus

(BMB), with each module containing BMB interface logic and a status register,
all system state storage is retained in mini-BOSS and communicated to the vari-

ous modules via levels on discrete control lines. This is principally due to the

fact that while BOSS fetched system state information from main memory and then

relayed it to other modules mini-BOSS stores such information internally in re-

dundant power protected CMOS registers.

A second consideration is that since mini-BOSS hardwired logic for re-

placing faulty modules is much more constrained than that of BOSS, mini-BOSS
will not be able to determine which of two processors or memories are at fault

in the duplex mode in cases where the fault is detected by the voter switch but

not by logic within the faulty module. This results in moving the Hamming
error detection/correction logic that was placed in the processor modules in

earlier versions of ARMMS to the memory module outputs instead. While the
old location provides for slightly increased masking of processor errors and for

reduced hardware in systems where the number of memory modules exceed the
number of processors it does complicate the error detection process. It should
be noted that with mini-BOSS the three ARMMS operating modes provide the
following fault detection and masking capabilities:

{% Detect/Mask }

Module Simplex Duplex TMR

CPE 93/0 99+/93 99+/99+

IOP 59/0 99+/59 99+/99+

Memory 99+/70 99+/99+ 99+/99+

Most faults are detected in simplex but only a portion of those in the
memory are masked. Duplex operation guarantees that virtually all faults will
be detected avoiding erroneous computations but only those faults also detectable
in simplex can result in masking and replacement of faulty modules with spares.
The masking property means that the computer is able to complete programs
already in progress before switching in a spare just as in the TMR case and
that it can continue to operate in the presence of a maskable fault once available
spares have been exhausted until ARMMS is commanded to change to a config-
uration requiring fewer active modules. Finally TMR operation masks virtually
all errors through voting. Clearly all modes have distinct characteristics
which distinguish them from one another except in the special case where all
modules internal error detection coverage approaches unity making duplex opera-
tion equivalent to TMR operation in performance. As discussed in earlier re-

ports unity coverage in the processor modules results in excessive complexity
for these modules in the ARMMS context and in incompatibility with existing
SUMC logic and is not recommended.

Aside from simplification of BOSS and memory access control logic in
the CPE, IOP, and memory modules and the elimination of the requirement for

4-67

processing other than for the channel within the IOP the only other change
required outside of mini-BOSS is the addition of interrupt and timer logic within
each CPE to handle I/O and external interrupts since the functions are no longer
handled by BOSS. Actually this brings the CPE closer to the SUMC design since
SUMC had to handle its own interrupts.

4. 7.2 Miniboss Concepts

As mentioned earlier mini-BOSS retains BOSS power and timing distri-
bution functions and co-ordinates ARMMS reconfiguration processes, either due
to new assignments from outside commands or due to detected malfunctions in
other ARMMS modules. Mini-BOSS is made TMR redundant with all partitions
powered and all outputs voted. For a 5 year mission and an assumed mini-BOSS
complexity of under 2, 000 gates per partition (about 25% of the number required
by a BOSS partition "A") failure rate calculations show a 99. 98% chance of no
non-maskable failures and a 97.4% chance of no failures whatsoever for mini-
BOSS logic without requiring additional switchable spares.

Mini-BOSS keeps track of the status of each module and of its stream
assignment if the multicomputer option is included. A module can take on one of
four states: spare, active normal, active rollback, failed. Initially all modules
are spares. A ground command places some subset of the available modules in
the "active normal" state and gives them assignments as discussed below. If a
module fails and the failure is detected mini-BOSS receives the failure interrupt
immediately if the failure was unmaskable or at the end of the program segment
if it was maskable and places that module in the "active rollback" state and re-
quests the module to repeat that program if the failure was non-maskable or to
proceed to the next program if the failure was maskable. If that module com-
pletes the assigned program successfully it will be returned to the "active nor-
mal" state, if it does not it will be placed in the "failed" state and its assignment
will be transferred to the first available spare module. The program to be exe-
cuted is determined by software - i. e. whether mini-BOSS receives the fault
interrupt before or after the program status block is updated. If the block has
been updated the next program is executed, if it has not the present program is
repeated. Program logic is expected to be constructed in such a way that it can
be repeated if necessary. The Program status block containing the contents of
all important processor scratchpad memory registers is stored in a unique block
of locations in main memory for each processing stream.

If only one stream is involved mini-BOSS need only tell a processor mod-
ule whether or not it is active. The number of active processors then deter-
mines whether the stream operation is simplex, duplex, or TMR mode. If more
than one stream is involved, however, each active module must be given an
assignment code uniquely specifying its stream assignment at that point in time.
A three bit assignment for each of 4 CPE's could allow each the following possi-
bilities: { TMR, DUPLEX A OR B, SIMPLEX A, B, C, OR D, SPARE } allowing
for all possible combinations of 4 processors. Memories can either be given an
explicate stream assignment (in a system with no global memories) or can in-
clude access control logic capable of responding to any stream's access request
as in the case of the full ARMMS system. In addition each memory must re-
ceive a page assignment containing the most significant bits of that memory's
address and implicate information as to the proper output bus to respond on in
the case of accesses by duplex or TMR streams where more than one memory

4-68

module is given a redundant page assignment. This was discussed at length in

the ARMMS Phase II report. In addition to the page assignment which is com-

municated to the memory by mini-BOSS each memory page is labeled "essential/

non-essential" internal to mini-BOSS. An essential memory would contain

programs and important tables the loss of which could disable a stream. Upon
a failure only essential memories would be reloaded from the remaining good
memories in duplex or TMR modes and loss of one of these memories would halt

operation in simplex. Loss of a non-essential memory would be handled by a

replacement procedure identical to that for the loss of a processor. Reloading of
an essential memory requires first clearing the newly activated memory's con-

tents by an interrupt from mini-BOSS to the memory and then causing the data

in the good memories to be READ out and then read back into both the good and

the newly activated memories by a special "RELOAD memory" routine activated

by an interrupt from mini-BOSS to the CPE.

Since one stream may use more than one memory page it is necessary
for a memory which has internally detected a failure to communicate this fact

to that stream's CPE(s) or to the last CPE to use a global memory. If a CPE

receives a failure indication from a memory it stores the memory page address

in a reserved location in its internal scratchpad memory and sets a control flip-

flop. If the memory failure is maskable operation continues until the program
is complete at which time mini-BOSS receives a failure interrupt or, if it is not

maskable, operation ceases immediately and mini-BOSS is interrupted. In each

case mini-BOSS receives interrupts from both its CPE and the memory and once

the memory has been replaced and the new memory's contents cleared if neces-

sary the CPE is restarted by mini-BOSS and told either to reload an essential
memory and then resume computations according to information stored in that

module's program status block or to simply resume computations without re-

loading a non-essential memory.

For 4 CPE, 4 IOP and 8 main memory modules 112 bits of internal stor-

age would be required within each mini-BOSS partition to implement. the func-
tions discussed above. Of these bits, 72 would control lines to other modules
and 40 would be use only internally by mini-BOSS. In addition 20 command
lines, 3 clock sync lines and 17 power lines would be required for a total of
112 lines from mini-BOSS to other modules. If each processor was provided

with 2 status interrupt lines to communicate the states { operating, memory
failure, processor failure, program completed successfully }to BOSS and each
memory was provided with a single status line a total of 24 additional lines to
mini-BOSS would be required giving a total of 136 lines at the mini-BOSS
interface.

4.7.3 Conclusions

Due to its simplicity relative to a full ARMMS system, a "BOSS"-less
version of ARMMS will probably be the version implemented in the ARMMS
breadboard. In a real-time environment many programs will be of a repetitive
nature and it may be possible to achieve throughput equal or greater to that
obtainable with a multiprocessor for a multicomputer since the programs can
be distributed equally among the available streams based on simulations of
ARMMS on a ground-based computer prior to a flight and the distribution will be

4-69

subject to less of the randomness associated with multiprocessing. If a mission
is found for ARMMS so that specific program requirements could be defined it
could be informative to simulate both multiprocessing and multicomputing and
compare their throughputs vs. their relative complexities to see if a full ARMMS
system is justified or if the system just described is superior.

4. 8 Requirements of the Automatically Reconfigurable Modular System

The objective of the Automatically Reconfigurable Modular System
(ARMS) project is the detailed design, fabrication, and testing of an ARMS bread-
board to prove the concepts developed to date in the ARMMS study. The bread-
board' s processor will utilize the 32-bit breadboard version of MSFC' s SUMC
processor as a baseline with modifications where necessary to meet ARMS re-
quirements. ARMS communication with SUMC's LSI module set and with SUMC's
instruction set, which is a subset of IBM's system 360 instruction set, should
minimize costs associated with software and LSI development, both for the
ARMS breadboard, and in application of ARMS to any potential future missions.
Schedules, deliverable items, and costs will be so divided that this project can
be incrementally funded on an annual basis: First a simplex breadboard will be
developed; then the breadboard will be fabricated and tested; third, memory and
processor modules will be replicated so that single processing stream duplex and
TMR configurations with switchable spares can be demonstrated; finally options
such as multiple stream operation, multiprocessing, LSI module fabrication,
and/or complete LSI breadboard construction and testing can be undertaken if
these meet NASA interests and requirements later in this project.

Concepts which ARMS will be required to verify and demonstrate include:
1) variable configuration capability ranging from fully synchronous TMR opera-
tion to maximize reliability to simplex operation for longer life in the presence
of failed modules, and for highest throughput in the event that it is later chosen
to implement a computer capable of supporting more than one processing stream;
2) high reliability through the incorporation of fault detection and recovery fea-
tures such as error detection and correction codes, selective redundancy,
switchable spare modules, voting and comparison techniques, and the use of high
reliability components; 3) modular design to provide a family of computers re-
sponsive to many mission types and phases.

An ARMS breadboard based on these criteria will have the following re-
quired specification s:

1. The total system shall incorporate 4 Central Processing Elements
(CPE) utilizing SUMC architecture, 4 main memory modules, one
Input/Output Processor (IOP), 4 memory to processor buses, 4
processor to memory buses, a central (configuration) control "Mini-
BOSS" element and sufficient peripheral equipment to exercise the
system. All CPE, IOP, and memory modules must incorporate
voter/switches at their inputs. This is the minimum configuration
capable of demonstrating voting, standby sparing, and synchronization;

2. The system shall be capable of simplex, duplex, and TMR operation
with switchable spares. It shall be required to support only one
processing stream although support of multiple processing streams
may be considered on an optional basis;

4-70

3. Fault insertion and breadboard control and monitoring capabilities
shall be provided;

4. System software to exercise the breadboard in order to demonstrate

fault detection and/or masking, recovery and system throughput shall

be developed in such a way as to be compatible with existing available

support software such as assemblers, compilers, loaders, link
editors, etc. Only software unique to the ARMS breadboard will be

developed by this program;

5. ARMS shall incorporate the necessary logic for single error correc-

tion and multiple error detection within memory modules by means

of a Hamming code. The CPE and IOP shall contain error detection

logic internally where practical. The central (configuration) control
element will provide timing and synchronization signal generation
and distribution, power sequencing, and minimum hardwired recon-

figuration and self-test capabilities based on error detection inputs
from other ARMS modules;

6. The ARMS IOP will be capable of interfacing with MSFC' s Data Man-

agement System Breadboard (DMS) and with ARMS peripherals
consisting of a printer, a keyboard, and either paper or magnetic
cassette tape storage. Both the DMS and ARMS peripherals shall be

capable of being connected to the IOP simultaneously through sepa-
rate selector type channels.

7. Logic functions shall be designed to be compatible with the SUMC
LSI module set where practical and so as to simplify transition into
new LSI modules in the case of ARMS functions not presently in-
cluded in the SUMC LSI module set.

8. Documentation adequate to allow understanding, operation, and
troubleshooting of the system hardware and software will be provided.
This will include flow charts, program and wire listings, operating
instructions, principles of operation, logic diagram and mechanical
drawings.

Designs that have been developed under the existing ARMMS project will
be used where possible or expanded or modified where necessary to implement
the ARMS breadboard. A major objective of ARMMS has been to achieve a mod-

ular design which allows for a family of highly reliable computers in a wide

range of configurations suitable to a wide range of space missions. It is ex-

pected that some missions requiring ARMMS reliability will not require the high

computational capacity provided by ARMMS multiprocessing and that simplified
version of ARMMS without multiprocessing would be a desirable member of the
ARMMS family of computers. Such a system provides a reasonable lowest cost
baseline for the ARMS breadboard and comes closest to meeting the real re-

quirements for potential space missions to which ARMS could be applicable
since while, these missions require very long lived computer none have to date
demonstrated a need or desire for multiple processing streams. Expected
differences between ARMMS and ARMS are summarized in Table XV.

4-71

TABLE XV. DEVIATIONS FROM ARMMS FOR ARMS

" System Level Changes

* Single Processing Stream Rather than Multiprocessing

* No Global Memory

* CPE Changes

* BOSS Control Interface Simplified for Central Control Element

* Memory Access Control Logic Modified

" Interrupt Logic Added

" More Compatible with SUMC LSI Modules and Instruction Set

" Memory Changes

* Access Control Logic Simplified

* Half Word Addressing Allowed

* Error Detection and Correction Logic Moved from Processor to Memory

* IOP Changes

* No Processing Required Other than for Channel - Complexity Reduction
~50-60%

" BOSS and Memory Interfaces Modified as in CPE

* IOPs are Paried with CPEs by Central Control Element

* Second Channel Provided for TTY Interface to Peripherals

* BOSS (Central Control Element) Changes

* No Processing - Complexity Reduction - 80%

4-72

SECTION 5

ARMMS COMPONENT AND PACKAGING TECHNOLOGY STUDIES

This section consists of two parts. The first summarizes the component
technology tradeoff studies performed during Phases I and II in the areas of data
bus technology, logic families, and power supply configurations. CMOS is the
recommended choice for ARMMS basic logic because of its low power dissipa-
tion, and high noise immunity and packaging density. Other CMOS advantages in-
clude wide temperature operations, high fanout, easy interfacing with bipolar
circuits, and operation over a wide power supply voltage range.

Bus technology studies resulted in the choice of a current source drawer
operating into a single ended isolated receiver over a 50f1microstrip line to pro-
vide best power-speed characteristics with simple technology and minimum pin
count.

Power supply configurations ranging from a single centralized supply to
individual power supplies per module were considered. Since no module should
depend on one power supply, modularization must be effective over a range of
ARMMS configurations, and BOSS must be able to switch other module' s power
on and off, a partially centralized regulator supplying power to up to 5 modules,
each of which incorporates a simple DC/DC converter, was selected as the best
alternative.

The last portion of this section gives the results of a study to define pack-
aging concepts and physical hardware parameters for each of the ARMMS module
types and for a range of typical ARMMS configurations. Areas investigated in-
cluded LSI chip and discrete component packaging methods, printed circuit
board design, chassis design, module interconnection techniques, and thermal
and stress analysis of the design chosen. For configurations ranging from
4 through 37 total modules the volume ranged from 945 in. 3 (15,500 cm 3) to
5600 in. 3 (91,900 cm 3), weight (mass) ranged from 33 pounds (72.6 kg) to
194 pounds (426. 8 kg) and power ranged from 120 watts to 1825 watts.

67

5.1 ARMMS COMPONENT TECHNOLOGY STUDIES SUMMARY

Component technology studies were performed for the areas of data bus
technology, logic families, and power supply configurations the results of which
were described in detail in earlier phase reports and are summarized in this
topic.

5. 1. 1 Data Bus Study

ARMMS data bus transmission line and interface logic designs should
allow 10 MHz data transmission between modules in any ARMMS configuration
with an average bus power dissipation of 250 mw/bit. To reduce pin counts
single ended (rather than differential) current source receivers and drivers will
be used, transmission power is minimized as much as possible without degrad-
ing data transmission quality, and a synchronous clock system with a period
greater than worst case delays in bus and module interfaces is required to
allow lock-step operations in duplex and TMR modes.

Since data is bussed to many modules it is important that a failed module
not be able to short the signal bus. Then, if a module fails open, while the mod-
ule is not available for use the bus is still available to the rest of the system.
To isolate receivers resistor isolation may be sufficient. For most driver
schemes a switch is necessary. For current drive transmission it is necessary
only to provide a switch in series with the high state supply for the drivers to
isolate a failed or unused module from the signal bus because these drivers have
a low impedance path from the signal bus to the +5. OV supply, but no low imped-
ance path from the signal bus to ground. In the ARMMS driver no one component
failure can disable a signal bus.

5. 1.2 Logic Family Study

Four logic families were investigated for use in ARMMS: Standard TTL,
Schottky TTL, Low-power Schottky TTL, and CMOS. The first two families
must be eliminated due to heat dissipation problems in ARMMS limited proc-
essor volume. A Schottky TTL implemented processor module would require a
structure thickness of one inch. Even if more exotic cooling systems such as
heat pipes were employed managing the power densities of these families would
be a nearly impossible task.

Without question the speed and propagation delays of today' s low power
Schottky TTL are adequate for ARMMS. Present day CMOS devices, however,
have propagation delays several times those of the low power Schottky family
but their future looks bright. Semiconductor houses are today developing ion
implantation techniques and silicon gate technologies for CMOS to reduce para-
sitic and junction capacitances. Silicon on sapphire and silicon on spinal sub-
strates will dramatically reduce substrate capacitance associated with bulk sili-
con CMOS devices. Device speeds in the range of 100 MHz will be possible
without effecting the speed-power relationship established in present day hard-
ware. However off chip capacitance considerations limit chip to chip logic
speeds to approximately 40 nsec.

DTL and RTL logic lines were rejected because it is thought that their
future in new design is somewhat limited because of their relatively low speed
and lack of interest within the semiconductor houses themselves. PMOS is
definitely a possible choice, but has been rejected because of the superior speed,
lower power dissipation and greater interest in CMOS. The high power levels
of ECL combined with the fact that their speed is not needed has caused the
elimination of this logic line from consideration.

5-1

Low power Schottky TTL's principal advantages are its high speed and
long history of reliability. Its disadvantages are its requirements for a well
regulated power supply and the need for careful layout and many "anti-glitch"
bypass capacitors.

At speeds of approximately 5 MHz, gate dissipations should run approxi-
mately 3 mw rivaling that of CMOS. Arrays of 60 gates are already available
and prospects for 80 gate arrays for custom chips still seems good. Asumming
a device complexity of 80 gates, approximately 200 chips would be necessary to
complete a processor module. The large number of devices required, and the
interconnections necessary, tend to rule out the use of this logic family in the
ARMMS computer. Aside from the interconnection problems, the low power
Schottky T 2 L element would be an ideal device for systems use. It does not
seem likely, however, that arrays in excess of 250 gates will become available
in the near future. Nor does it appear likely that processing yields will allow
anything other than discretionary wiring techniques for reaching this level of
complexity.

The advent of CMOS digital elements has given system designs a new feel
which solves many of the problems of bipolar hardware. One of the most de-
sirable characteristics of CMOS is its lower power dissipation. Under quiescent
conditions either the p channel or n channel device is off; consequently, the de-
vice is dissipating virtually no power. Only during the transition between states
does the device dissipate power. Quiescent power dissipation is typically
0.01 jiw per gate; dynamic power dissipation is 0.4 mw/MHz. With a lightly
loaded (6 pf) line, a CMOS gate will dissipate approximately 2 mw at 5 megahertz.

The ability to operate CMOS from a single, relatively wide tolerance
supply bus significantly eases system power supply design requirements. Most
CMOS logic is fully capable of working from a supply voltage from as low as
4 volts, to as high as 18 volts. Noise immunity of CMOS elements is corre-
spondingly high. Noise immunity is typically 0. 45 Vdd and increases with
increasing supply voltage.

Another significant advantage of CMOS is simplicity of fabrication. CMOS
requires three major diffusion steps compared to five for bipolar devices. De-
vice geometries for CMOS are significantly smaller than for bipolar elements,
and linear resistors are not used. Consequently, a CMOS gate may be as much
as a factor of eight smaller than its bipolar counterpart. This, combined with
simpler fabrication processes, will allow high complexity chips with moderate
yields. Also CMOS elements are capable of operating over the entire military
temperature (-55 to +1250C) with only minimum variations in device perform-
ance and because of relatively low output impedance and high input impedance,
CMOS has the largest fanout capability of any logic form. Fanouts of greater
than 50 are readily achieved. Interfacing with bipolar logic elements is also
relatively simple. CMOS will interface with T 2 L directly, and open collector
T 2 L will directly interface with CMOS. A pull up resistor is normally required
to interface T 2 L elements to CMOS inputs.

If a processor module was to be constructed today, and if the processor
had to operate at speeds in excess of 5 MHz, low power Schottky T 2 L would be
selected as the best logic choice. CMOS would have to be rejected because of
its somewhat lower speed. This would be the only reason for its rejection.

Since the design of this computer is being projected into a future time
frame, CMOS processing should have proceeded to the point that its speed

5-2

characteristics will equal or surpass that of low power Schottky T 2L. With the
higher speed, lower power, greater fanout, ease of T 2 L interfacing and greater
allowable device complexity, it is recommended that the CMOS logic elements be
chosen as the basic logic elements in the ARMMS computer.

5. 1.3 Power Supply Configuration Study

A power supply configuration tradeoff study was performed during
Phase II to select a power distribution implementation and to generate detailed
circuits allowing the determination of parts counts, weight, power, and relia-
bility of the baseline design.

Three bus systems were investigated for primary power distribution:
a regulated AC bus, a low voltage DC bus, and a conventional DC bus. The
latter alternative was chosen because it is a proven design providing module
ground isolation, minimal noise problems, and ease of power switching. Its only
disadvantage is its relatively high parts count.

Six secondary power distribution methods were considered ranging from
a single supply with redundant backup providing power to all modules to a sepa-
rate supply for each module. A "partially decentralized" approach was chosen
in which each module has its own power supply operated from a regulated dc bus
supplied by a common pre-regulator. Each pre-regulator supplies several mod-
ules with the number of pre-regulators depending on the size of the total system
configuration. No regulating circuitry is required in the individual module sup-
plies saving a significant number of parts. This approach yields excellent
ground isolation and regulation and good configuration flexibility at a moderate
complexity. It has three other advantages: 1) good system reliability since fail-
ure of one supply will only cause one module to fail; 2) good thermal character-
istics since regulator power losses are not added to other module heat sources;
and 3) good output voltage flexibility since power is switched at the primary side
of a DC/DC converter and thus new secondary voltages can be easily added. The
distribution scheme is shown in Figure 1.

For the detailed design described in the ARMMS Phase II report power
supply complexity averages less than 40 components and reliability (exclusive
of fuses) in 0.066 failures/10 6 hours. The efficiency of the module power sup-
plies is expected to run 80% and that of the pre-regulator 85%. Overall efficiency
is thus 68%.

5.2 ARMMS PACKAGING CONCEPTS STUDY

The primary objective of the ARMMS packaging study performed during
Phase III was to define the packaging concepts for each of the five module types:
Central Processing Element (CPE), Input/Output Processor (IOP), Block
Organizer and System Scheduler (BOSS), Main Memory, and Preregulator Mod-
ules. It was also necessary to investigate the weight and volume requirements
of each module type and determine the ability of each module to meet the system
operational requirements. In addition, a thermal analysis of key functions of
the proposed design was undertaken and results of this analysis were used to
reconfigure those expected problem areas.

5-3

CPE NO. 1 +5V

REGULATED
DC BUS NO. 1

PRE-REGULATOR lOP NO. 1
NO. 1

MEMORY NO. 1
TO BOSS

UNREGULATED
+28 VDC BUS

TO BOSS

CPE NO. N

REGULATED
DC BUS NO. N

PRE-REGULATOR
NO. N IOP NO. N

MEMORY NO. N

Figure 1. Typical ARMMS Power Supply Configuration

5-4

5.2. 1 LSI Chip and Discrete Device Packaging

Because of the complex nature of the LSI chips to be developed for this
program (>250 equivalent gates of random logic per chip), a tradeoff study was
necessary to determine the optimum configuration for packaging the individual
chips. Three design configurations were considered:

1. A hybrid design where 10 to 20 bare chips would be interconnected
in one package.

2. A design that would package the bare chips in individual leadless
packages.

3. A design utilizing beam leaded devices.

Assuming an 80% yield for die attach and wire bonding, a 10-device hybrid would
have a yield of 10. 7% while a 20 device hybrid would have a yield of less than
one percent. A hybrid with less than 10 chips was not considered when prelimi-
nary investigations indicated only minor weight and volume improvement over the
discrete package approach. The individual leadless package was adopted because
it offered a high yield for device assembly (80%) plus the ability to completely
environmentally test and power age the device before committing it to hardware.
With a hybrid design, complete environmental testing is possible only after com-
pletion of the entire package. Any dropouts due to burn-in, assembly defects or
electrical overstress would be extremely costly at that point.

The use of beam lead technology was rejected for two basic reasons:

1. The long term reliability of large (60 lead) beam leaded devices has
not been proven nor have the production processing problems been
fully resolved.

2. The beam lead attachment technique represents a nonoptimum ther-
mal control design. The power dissipation levels of the chip will not
allow the added thermal impedance expected with beam leads. Since
power dissipated on the chip must be conducted through the beam
lead to the package to provide conductive cooling, combined with the
relatively long thermal path and small cross section area, local hot
spots on the device could become the determining factor in limiting
the operational temperature of the computer.

The interconnection of the discrete devices (resistors, capacitors, diodes,
transistors, etc.) will be accomplished by conventional hybrid assembly tech-
niques. Because relatively high values of resistors are expected with only mod-
erate requirements on thermal coefficient of resistance, thick film processes
will be used. Hybrids with 40 to 50 elements can be fabricated with yields high
enough (70%) to make their use economical. Areas where the hybrids appear
most attractive are those of the bus interface and the IOP buffer circuitry.
Where high power dissipating circuits are found, discrete devices will be used.

5-5

5. 2.2 Printed Circuit Board Design

Interconnection of the discrete LSI devices and hybrids within a module
will be accomplished with a printed circuit board sandwich assembly (Figure 2).
The electrically conductive patterns are stacked by planes, separated and in-
sulated by layers of a high alumina ceramic material. The composite hermeti-
cally seals all internal circuitry. The two insulating planes will be 0. 008 thick
95% A120 3 ceramic. The ARMMS circuit cards are essentially two cards
bonded together with a center layer of 0. 010 copper for thermal conduction.
Either tungsten or molybdenum based metallizing may be used for the conductive
patterns. Thicknesses of 0. 001 inch are normal. Conductor widths of 0. 005
inch with 0. 010 inch spacing is recommended, however 0. 004 mil lines on 0. 008
centers are feasible. Ten mil diameter holes in the insulating plane (called via
holes) are used to interconnect the conductive planes. All areas which are ex-
posed normally receive nickel and gold plating. The 30-pin (Figure 3) and
60-pin CMOS leadless packages may be attached using ultra-sonic or thermal
compression bonding techniques. An alternate method is to have packages with
short stub leads for bonding. Since the package substrate and the circuit card
are of the same material, the common failures from thermal cycling will not be
present.

The CPE circuit card (one side of the bonded assembly) was chosen as a
typical example for calculating the number of layers required for the cards.
The processor card has three 60-lead flat packs, three 30-lead flat packs and
five 22-lead hybrid flat packs. All input/output signals go through the hybrid
circuits. Therefore, 45 conductors will enter the board and 45 leads will con-
tinue out to the logic flat packs (5 x 22 = 110 minus 20 power and ground
leads = 90). The size of the card is 4. 312 x 3. 438 inches.

Assuming:

0. 25 each side for attachment

0. 20 for flexible connection area

0. 30 for intraconnection connector

This gives an active conductor area of:

(4. 312 - 0.50) x (3. 438 - 0. 50) = 3. 812 x 2. 938 = 11. 20 in. 2

With conductor widths of 0. 005 and 0. 010 spacing and using an efficiency
of 70%, the maximum possible number of vertical runs will be

3. 812 x 0. 70
= 177.0. 015

The maximum possible horizontal runs will be

2. 938 x 0. 70
= 136.0. 015

5-6

C/CUIT CONDUCTOR TYP 0

ALUMINA LAYER W

FLATPACR REF
BONDED INSULATION

./o0

COPPER COR -

CLE'ARANCE HOLE POR NO.4 .o 7YP
HARDWARE' 4 PLACES f . TYP

- INPUT/ OUTPUT FLATP'ACK TYPICAL CROSS SECT/A/
PLCES OF CIRCIT7- ADARD SCALE' NONE

- 30 P/N FL-ATPACA'
6 PLACES

FLEX CABLE
CONNECT/ON SURFACE

3.438

/0 M/L COPPER COR"

60 PIN FLATPACk

6 PLACES

PROCESSORZ BOARDS NO / NO-
TNIS "VEW SHOWS rTE CIARCVT BOARD5 FOR.

A MAAX OF: S5/x(.) 60 LEAD FLATPACRIS
1 X () 4f LEAD FLAATPAC S

TEN(IO) /NPUT/OVTPUT FLATPAC S

Figure 2. Layout-Processor Circuit Board, ARMMS Computer

-- .500

420 ICOVER (REF)

.380

CASE

II

.330 - .050 TYP

.370

.450 A A

ACTUAL SIZE

.040- O6
TYP

.060 CIRCUIT PATHS
TYP 8, 2 SIDES

7,2 SIDES

SUBSTRATE TYP

0 - L.0400 REF .040

CONDUCTIVE MATL

SECTION A-A

Figure 3. Layout 30 Connection Flatpack Case

The first layer of the circuit card is used for power and ground runs and
component attachment. The component contacts total

30 x 3 = 90

60 x 3 = 180

270.

Assuming half of the contact total between components, 45 input con-
ductors and 126 board-to-board conductors (180 pins at 70% efficiency) a total
of 283 wiring runs will be required. The total conductors available are
136 + 177 = 313. From this calculation, it can be seen that the cards require
3 layers for each'side.

I/O requirements 45

Component-to-component 135

Board-to-board 126

Total conductor requirements 306

The circuit card material will have dielectric constant (K) = 8. 6.
Assuming six layers of conductors plus a 0. 010 inch thick center copper heat
sink plane the printed circuit card has a total thickness of 0. 06 inch. The spac-
ing between layers will be 0. 008 inch, and the conductor width will be as noted
above. Therefore the capacitance between the parallel conductors on adjacent
layers is 2. 41 pf/in. capacitance between layers 1 and 3 parallel conductors is
calculated to be 1. 47 pf/in. and capacitance between different conductive layers
and the heatsink plane ranges from 1. 56 to 4. 69 pf/in. The module printed cir-
cuit card connectors have pin spacing of 0. 075 x 0. 125 inch, conductor length of
0. 650 inch, and pin size of 0. 025 x 0. 025 inch. The connector body material
will be diallyl phthalate with a dielectric constant (K) = 4. 5. The capacitance
between adjacent pins at 0. 075 spacing is 0.33 pf and in the direction of the
0.125 spacing is C = 0.17 Pf.

When a pin is surrounded by ground pins, the worst case condition can
occur, which is

C = 0. 33 + 0. 17 + 0. 33 = 0. 83 Pf.

5.2. 3 Chassis Design

The module chassis will be a machined structure which will provide me-
chanical support and a thermal path between the printed circuit boards and the
unit chassis. The keynote of the module chassis design is its simplicity and the
ability to fabricate the part using standard numerically controlled machining
equipment. The design also allows for nearly complete assembly and test of the
module electronics outside the chassis.

5-9

The unit chassis, to which each module is mounted, is also a machined
structure. Mating connectors for the modules are attached to this structure as
are the system input/output connectors. High power dissipating components
(series switch transistors) associated with the preregulator are mounted on
machined bases and flanges.

The unit chassis design consists of a basic expandable rectangular con-
figuration. These features provide accommodations for six configurations of
module arrangements. It is 15 inches wide, not including the mounting tabs pro-
vided as a means of attachment to the spacecraft structure. The length will vary
according to a given modular configuration and since only the length is variable
economical programming of numerically controlled fabrication equipment is
facilitated. The height will be 2.50 inches maximum. The unit chassis and cover
are fabricated from 6061-T6 aluminum alloy. The unit chassis contains an in-
termittent center web which provides a good thermal path from the module
attach points to the cold plate of the spacecraft while still allowing interconnec-
tions through the mother board. The use of thick side walls and intermittent
center webs of the unit chassis was selected for favorable thermal properties.
The unit chassis has four circular connectors mounted at one end for input/
output signals. For accessibility, a removable cover is provided at the bottom
of the unit chassis. An exploded view of a complete unit is shown in Figure 4.

The unit chassis contains a mother board which is configurable to the
module arrangements. The mother board is a multilayer printed circuit board
containing the interconnecting circuitry to the modules. Data lines are shielded
with ground planes above and below and, where necessary, ground shields may
be provided between the data lines to eliminate crosstalk.

To interface with the modules, rectangular connectors having 244 sockets
are mounted to the mother board. The mother board assembly (with chassis
connectors installed) is assembled into the chassis using fillister head screws
and locking washers. The modules then mount on the top surface mating the
module connector with the chassis connector. A thermal interface material
(D-C 340 or equivalent) is used at the structural interface to aid thermal con-
duction. The thermal requirements have dictated heavy side walls for the mod-
ules (0. 15") which also satisfies the structural requirements for this resultant
cantilever condition. The mother board material will be epoxy glass laminate
with a dielectric constant (K) = 5.2. The total board thickness will be approxi-
mately 0. 060 inch, conductor thickness 0. 003 inch, and the conductor width
0. 02 inch. The capacitance between conductor and ground planes is 15. 0 pf/in.
Preliminary investigation indicated a need for approximately 9 layers for the
data bus lines and a maximum of three layers for power distribution and control
lines. Consequently, the mother board will have 9 to 12 layers.

Intraconnections within the modules will be achieved by an integrated use
of multilayered flex cable and multilayered printed circuit boards. Conventional
insulated wire will be used only in the power supplies and preregulators. The
use of multilayered flex cable provides the advantage of an easy fold-out method
for probing or repair of printed circuit cards in their respective modules. Re-
assembly of the printed circuit cards is a relatively simple task.

5-10

I UNIT CHASSIS

2 CPE MODULE

3 1/O MODULE

4 PRE-REGULATOR

5 MODULE CONNECTOR 244 PIN

6 CIRCUIT BOARD CONNECTOR

7 CIRCUIT BOARD

8 UNIT COVER

9 MISCELLANEOUS HARDWARE

,YI 10 INTERFACE CONNECTOR

II MEMORY MODULE

a DETA/L OF UNIT CI/RCuT bOARD 14 UNII7-

MOOV'IES ARE OM7,TTED FOR CLARITY.

./I. THE UNIT SHOWN HAS 4 C4 MODULES,
4 Z/O MODULES 7 MEMORY MODULES,

" ONE () PRE- CRGULrTOR.

.7. "N O T E S :

F 4 E d7 V 10

9 A

Figure 4. Exploded View of ARMMS Unit

A multilayer circuit board will be used to connect signals between boards
of a given module. This is accomplished by the use of rectangular connectors
mounted on an intraconnection circuit board and subsequently plugged into mating
connectors mounted along the edge of each module printed circuit card. This
method eliminates the use of wiring between boards and provides a means for
simple disconnections. As the design is envisioned, approximately 180 pins will
be available on each printed circuit board.

5.2.4 Basic Module Construction

Each module consists of a chassis cover, connector plate and brackets
fabricated from aluminum alloy (Figure 5). The modules have a rectangular
configuration with external mounting feet. All modules have a height of
4. 78 inches. The CPE, and IOP modules have a standard length of 5.88 inches
while the memory, BOSS and preregulator modules have a length of 9. 00 inches.

5. 2. 4. 1 The IOP and CPE Processor Modules

The IOP and CPE modules are 5. 88 inches long by 4. 78 inches high by
2. 50 inches wide. The circuitry includes 20 ICs in 30-pin packages, 20 ICs in
60-pin packages and 28 input/output flat packs (each containing 8 buffer circuits)
packaged on four circuit cards. Also, included is one circuit card containing a
DC/DC converter power supply for the module. Power dissipation from the
processor cards is 25 watts and from the DC/DC converter is 5 watts. Flexible
printed cable provides the output connections from the circuit cards to the
244 pin module output connector. Power distribution within the module is also
through the flexible printed cable. The input/output pin requirement for each
module is estimated at 225 pins. The current requirement for the power supply
implies multiple pins are required for bus power input.

The CPE module is physically identical to the IOP module with the ex-
ception of hookup, the elimination of nine input/output flat packs, and 75 input/
output pins. An isometric view of a CPE module with power supply is shown in
Figure 6. The weight of the IOP or CPE is calculated at 3.46 pounds.

5. 2. 4. 2 The BOSS Module

The BOSS module is packaged very similarly to the CPE module with the
exception that it contains 20 circuit cards and two DC/DC converter cards. Di-
mensionally, it is 9. 00 inches long x 4. 78 inches high and 4. 95 inches wide.
There are two 244-pin connectors for connection to the base assembly. The
module contains 160 integrated circuits. Eighty of these devices are the 30-lead
type, while 80 are the 60-lead type. In addition, there are two crystal oscilla-
tor packages. There will be 300 input-output lines interfacing with discrete
(hybrid) buffer circuits. A total of 76 I/O buffer flat packs will be required.
Total power dissipated within the module will be

60 watts logic power
10 watts bus interface
14 watts DC/DC converter

84 watts total.

The BOSS module is estimated to weigh 10. 6 pounds (Figure 7).

5-12

2100

CONIJEC TO ANS

FLATPTACS oN/rJO M FOR C/TYTr U/TO

ek C- .-

Figure 5. Layout-Power Supply and Processor Module

iN7RACONNECC BOARD

ER SUPPL Y

PRCLSSOR BOARD

Figure 6. Isometric-Processor Module (ARMMS Study)

5-14

CONNECTOR,SUB M/NIATUR0

WS50244P00.SV (AC NEWAOT)

-CUSTOM PRINTED .v/~NG

NO. 4 HARDWARE

PoeA £7 Soo sPPor FRONT V/.w Boss oMA

AL lOY 60A-t Cov£1 MTT C.601-76

Fiure 7. La 4 SCREWSout-BO WASERSSS Module
SCREW NARRAD /NSERTS

c-n

A-A -44,

SACAWC, PC RoRS SUPPoIr FRONT VSR-- pOps obooYn.

Figure 7. Layout-BOSS Module

5.2.4. 3 The Memory Module

The memory module consists of a four card plated wire memory stack

with an input/output card mounted on either side (Figure 8). The entire stack is

bolted together with spacers maintaining proper distance between cards. Like
all the other modules, the memory module contains its own DC/DC converter.
The module is 9.00 inches long x 4.78 inches high x 1.50 inches wide. Esti-
mated weight is 4. 03 pounds. The memory module contains ten integrated cir-
cuits, each with 60 leads. There will be 150 interface lines with the same
buffer as used on the CPE module. The memory will be approximately 320 K bits

organized as 8 K words, 40 bits per word. The total power dissipation within
the module shall be as follows:

5 watts logic
15 watts stack electronics

5 watts bus interface
5 watts DC/DC converter

30 watts total

COMNECtOO> SCM MlN ALTNRE

S60 LEAD -AAC-
L)

4, A-] 7

4O C/OE 1L ACUcS SECT/ON A-A

CovMR OM/TTD FOR CLAR /Tr

SECTOn B-B

Figure 8. Layout-Memory Module

5-16

5. 2. 4. 4 The Preregulator Module

The preregulator module (Figure 9) consists of one to four printed cir-
cuit cards. Each card contains the equivalent of two preregulators. The num-
ber of printed circuit cards in each module will vary according to the require-
ments of the system configurations. With a maximum configuration of eight
preregulators, the module is 9. 00 inches long by 4.78 inches high by 4. 95 inches

wide. Estimated weight is 7.00 pounds. Total power dissipation per preregu-
lator is 22 watts, of which 8 is dissipated in the line switch which is mounted to

the unit chassis.

-CH1ASSI MATERIAL: - CONNECTOR SUB MINIATURE Z" PIN -BRAICKET,P.C. OAROD SUPPORT A

LAL ALLOY GOGI-Tr. WSS0214 PORIA 501(WAC NEWPORT) NO.4 HAROWARE / AL ALLOY 6061-TN O0- THICK

SROWARE
AL ALLOY 06- . Z THCK

No. 4 CREWSTWASWERS

CUSTOM PRINTED WIRING
(FLEXABLE CABLE -

((0

((

\ --1J--

..... _ _E_

Figure 9. Pre-Regulator Module Max Configuration

5-175-17

5.2.5 Weight, Volume, Mass Properties

Tables I and II itemize the weight, volume and size of the five individual

ARMMS modules and six possible computer combinations of Table Im. Table IV

lists module component totals. Three of these configurations are illustrated in

Figures 10, 11, and 12.

TABLE I. MODULE MASS PROPERTIES

Volume in. 3 Weight pounds
Module Size inches (cm) (cm 3) (KG)

CPE 2.5 x 4. 78 x 5.88 70.3 3.46
(6. 35) x (12. 14) x (14. 93) (1150. 93) (7. 61)

IOP 2. 5 x 4. 78 x 5. 88 70.3 3.46
(6. 35) x (12. 14) x (14. 93) (1150. 93) (7. 61)

Memory 1. 5 x 4. 78 x 9. 00 64.5 4.03
(3. 81) x (12. 14) x (22. 86) (1057. 35) (8. 86)

BOSS 4.95 x 4. 78 x 9. 00 213.0 10.6
(12.57) x (12.14) x (22.86) (3488.43) (23.32)

Preregulator 5. 0 x 4. 78 x 9. 00 215.1 7. 00
(12.70) x (12.14) x (22.86) (3524.50) (15.4)

Max. Conf.

TABLE II. ARMMS COMPUTER MASS PROPERTIES

Configuration CPE IOP BOSS Memory Weight Pounds Volume in. 3

1 1 1 - 2 33 945
2 2 2 - 4 51 1280
3 3 3 - 6 70 1740
4 4 4 - 8 90 2320
5 4 4 1 16 140 3400
6 7 4 1 25 194 5600

TABLE I]I. ARMMS COMPUTER MODULAR CONFIGURATION

Configuration Preregulator CPE IOP Memory BOSS Total Module Count

1 1 1 1 1-2 - 4-5
2 1 2 2 2-4 - 7-9
3 1 3 3 3-6 - 10-13
4 1 4 4 4-8 - 13-17
5 1 4 4 8-16 1 18-26
6 1 7 4 8-25 1 21-38

TABLE IV. ARMMS MODULE PHYSICAL CHARACTERISTICS

No. of
No. of No. of No. of Interface No. of Power

Module 30 Pin IC's 60 Pin IC's Hybrids Lines PC Boards Dissapation

CPE 20 20 19 150 4 30
IOP 20 20 28 225 4 30
BOSS 80 80 76 300 20 85
Memory -- 10 19 150 6 30

5-18

1 11.38

PRE -

S 2 3 4- RE6ULATOR

16.12

CPE //0 CPE //0

Figure 10. Configuration No. 2 of ARMMS Chassis

MIOR ES

2 3 4 5 6 7 PRE-
I I REGULATOR

CPE 1/0 CPE 1/0 CPE i/0 CPE 1/0

Figure 11. Configuration No. 4 of ARMMS Chassis

5-19

Ii -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

c/2

PRE

CPE I/O CPE 1/0 CPE I/O C.PE I/O BOSS GCPE CPE CPE REGULATOR

34.30

46.34

Figure 12. Configuration No. 6 of ARMMS Chassis

5-20

5.2.6 Thermal Analysis

Analysis of the proposed design indicates that the greatest temperature
rise between the baseplate and the hottest component is 880 C. This will allow
the unit to be mounted on a 37 0 C baseplate while maintaining a maximum chip
temperature of 1250C. Significant reductions in the thermal rises of the unit
may be achieved by improving the thermal conductivity of interfaces among the
structural members of the unit. Detailed investigation of contact interface

phenomena will be necessary before a final hardware implementation can be
achieved.

The ARMMS unit is intended to be operated in a space environment which
eliminates convection as a potential mode of heat transfer. It is assumed that
the chassis is operated in an environment such that adjacent modules and

printed boards are at the same temperature level, and radiation heat transfer is

negligible. Except for the utilization of heat pipes, conduction heat transfer is
the only heat removal mode considered in this study.

Heat generated by the chips will be transfered by conduction through the

case of the flat packs to the printed circuit boards. The ceramic alumina printed
circuit board is assumed to have a thermal conductivity (k) of 14.5 (BTU/HR-ft2 -

o F/ft) which is a typical value for this material. Some kind of heat sinking de-
vice (copper plate k = 200 BTU/HR-ft2 - OF/FT or heat pipes) will be required
to enhance the conduction path to the edges of the printed circuit board. The
heat is conducted from the printed circuit board through mounting brackets to

the aluminum sides of the modules, across several contact resistances in the
aluminum chassis, and finally rejected to the constant temperature cold plate.

The results of this study are in the form of temperature rising steps from the
cold plate and are presented in Table V.

TABLE V. EXAMPLE FOR ESTIMATING TOTAL CHIP TEMPERATURE RISE
(ALL TEMPERATURES OC)

I/O, CPE and Boss and Memory
Memory Section Section

Parameter
I/O CPE Memory BOSS Memory

Cold plate 0 0 0 0 0
(reference temp.)

Module base temp. Resistivity = 0. 001
rise (Hr-ft2 -o F/BTU) 28 28 32 30 28

Module wall temp. Wall thk. = 0. 15" 12 29 22 29 22
rise

PC board temp. rise Resistance = 0.4 4 3 5 3 5
across bracket (Hr-oF/BTU)

PC board temp. rise Copper plate thk. 12 8 28 8 28
= 0. 01"

Chip temp. rise 5 5 5 5 5
across flat pack

Total chip temp. rise 61 73 63 75 88

oC above cold plate

5-21

5. 2. 7 Stress Analysis

The proposed ARMMS module design has not been subjected to a detailed
stress analysis because the vibrational environment for the proposed system is
undefined. However, a unit similar in design but slightly smaller in physical
size than the CPE module has been fabricated and vibrationally tested with no
mechanical or electrical anomalies. The unit was subjected to a sine sweep vi-
bration test of 10 G's from 20 Hz to 2 kHz for nine minutes per axis in each of
three axes, plus a random vibration test of 0. 2 g2 /Hz between 20 Hz and 2 kHz
for four minutes per axis in each of three axes. The RMS level of the random
vibrational test is approximately 20 G's. The unit was electrically powered and
monitored during each test. This environment represents a typical G load which
a unit mounted within a spacecraft could be expected to see during launch.

Presently under development is a small (approximately CPE module
size) high density unit design to withstand a random vibration level of approxi-
mately 30 G's RMS. If significantly higher power spectral densities are
expected for ARMMS, additional testing and analytical stress calculations will
be necessary to ensure that unit's ability to withstand the higher vibrational
loads. If a particular launch vehicle power spectral density curve is available,
it may be possible to design the modules such that all major resonant points of
the structural assemblies lie outside the frequency spectrum of acoustical or
mechanical vibration energy of that particular vehicle.

5.2. 8 Areas That Could Use Additional Investigation

One of the major problems in the conceptual design just presented is the
buildup on connector extraction forces in the card intraconnection area. There
are zero insertion/extraction force connectors on the market, but they are not
compatible with this design. Possibly in the 1980 era, there will be usable con-
nectors for this application. If this does not prove to be the case, a special
insertion/extraction mechanism can be designed for the connectors proposed.

The BOSS module, as presently envisioned, is partitioned to provide the
greatest utilization of the CPE printed circuit board assemblies. By eliminating
the standardization of the printed circuit board design between the CPE and
BOSS, one "A" partition board can be eliminated per "A" partition. This would
result in the elimination of four printed circuit board assemblies in the BOSS
and a one inch reduction in its length.

5-22

SECTION 6

ARMMS RE LIABILITY STUDIES

This section consists of two parts. The first summarizes the reliability
data base study performed during Phase I which yielded the failure rate
numbers used in the module reliability analyses performed during Phase III
and described in Section 4 of this report. Equations for hand calculating ARMMS
reliability using the numbers from Section 4 are also given. The second topic
surveys reliability studies performed elsewhere, assessing their degree of
applicability to ARMMS, and then describes a new model developed specifically
for ARMMS. This model will require programming on a digital computer before
it can be used but is of considerable theoretical interest in its present form
since it points up some of the unique modeling problems presented by the
ARMMS architecture.

SECTION 6

ARMMS RELIABILITY STUDIES

6.1 RELIABILITY DATA BASE

This topic summarizes the component reliability data used elsewhere in
this report for analyses and predictions. The rates are for high quality electronic
parts screened for space environment at low levels of electrical, thermal, and
mechanical stress. The rates which appear in Table I are projections for 1973
technology based on 1970 handbook predictions viewed in the light of Hughes
experience with space programs. A more complete table appeared in the
Phase I report. It would have been desirable to accumulate and analyze part
failure data from many space programs and use the resulting best estimates
for the ARMMS data base. This proved to be infeasible because while millions
of system hours of data from space programs exist the data is still too scanty
and uncertain to accurately access the failure rate of an individual part type
such as a power wire wound resistor because the accuracy of failure rate esti-
mates, especially in the zero-failure case, depends heavily on the amount of
time accumulated. The problem is compounded by the fact that isolation of
failures to a piece part through limited telemetry data is often impossible so
many part failures never get charged against the part. Finally much of the data
is several years old and reflects now outdated technology.

Therefore, a different technique was used, whereby part failure rates
were estimated using a combination of observed and predicted values. This was
based on the two ideas: 1) that a handbook predicted value (which is partly
theoretical) is better than an observed value if the data for the observed value
is scanty; and 2) an estimate based on a prediction and an observation is better
than one based only on observation. Hughes Aircraft Company has logged many

TABLE I. SELECTED ARMMS FAILURE RATES

Part Type Failure Rate/106 Hr

Integrated Circuits (250 gates CMOS) 0. 025
Integrated Circuits (Linear) 0. 009
Capacitor (Glass) 0. 00016
Capacitor (Film) 0.00008
Capacitor (Solid Tantalum) 0. 00008
Diode (Power Rectifier) 0. 0008
Diode (Switching) 0. 0008
Diode (Zener) 0. 0016
Resistor (Carbon Composition) 0. 00002
Resistor (Thick Film) 0. 0006
Resistor (Power Wire Wound) 0.0042
Transistor (Power) 0.0044
Transistor (High Speed Switch) 0.0016
Plated Wire 0. 00008

6-1

hours in space with its various satellite programs, yielding useful data for
reliability predictions of space systems. The expected number of failures was

predicted for all satellites to date, and actual failures were then monitored,
although not always classified. Thus, it was possible to compare predicted and
observed failure rates at the system level, and determine the proper modifying
factor for predicted failure rates. While the observed number of failures so far
has been 47% of the predicted number, the predicted numbers are used in the
table and throughout this report to provide an extra margin of safety. These
numbers were multiplied by 0.47 in the table in the Phase I report however.

Little is known about the failure rates of parts in unenergized systems.
The best available ratio, from a 1971 report by Aerospace Corp. for "hi-rel

parts with rigorous specifications, stringent manufacturing controls, and
extensive screening" is 0. 8. This number is higher (i. e., more pessimistic)
than for MIL-STD or commercial parts which involve lesser manufacturing con-
trols and whose operating to dormant failure rate ratios tend to appear more
often in the literature. It is also generally assumed that high rates of power
cycling are detrimental but that very low rates (1 cycle/1000 hours) have a
neglible effect. Thus cycling is assumed not to effect failure rates in ARMMS.
Failure rates are assumed to remain constant throughout the mission allowing
the use of the usual exponential probability function. Finally to take into account
the rapid reduction in MOS-device failure rates the microsecond failure rates
have been multiplied by a factor of 0. 25 which seems conservative for extrapolat-
ing these rates between 1970 and 1973. No improvement has been assumed in
other failure rates over this period.

Once a composite failure rate has been obtained for a module, based upon
the above discussion and the module's design and taking into account fault detec-
tion and masking if any, it is possible to compute the probability of successful
operation of the module or of a given number out of a group of modules either
using the computer model described in the next topic or, if active and passive
failure rates are taken to be the same, by the equation below:

If q = e- = probability of a module with failure rate A is still operating at
time t and p= 1-q

Then Qmn = n/(n-m) m qm p(n-m) = probability that m out of n modules each
with failure rate A will operate at time t

m
Therefore Pf = 1 - Qmn = probability that no more than n-m-1 modules

k=0 have failed by time t

6-2

6.2 THE RELIABILITY MODELING OF COVERAGE IN THE SIMPLEX,
MULTIPROCESSOR, DUPLEX AND TMR MODES FOR FAULT TOLERANT
COMPUTER SYSTEMS

I. Introduction

The purpose of the present analysis is to develop a model of fault-tolerant

computer coverage for the Simplex, Multiprocessor, Duplex and TMIR modes. This

model will allow for differing active and passive hazard rates x, p. where xk a and

fault detection and fault masking capability in which each module of a specified

module class can tolerate up to one maskable failure.

The present study will cover a mission of one phase duration as opposed to the

more general type of model, developed in (1], in which a multi-phase mission was

analyzed. In that study it was assumed that coverage was perfect, i. e. the fault

detection, isolation and restoration of failed modules could be achieved with probabil-

ity equal to one. Then it was possible to examine an entire mission profile of computer

phased activities, in which each phase was describable in terms of two integers Ni

and Di, where Ni was the desired number of modules which the mission planner

required for mission phase i, while Di was the minimal number of modules of the

given module class that must remain operational, in order to insure that the module

class will perform its essential functions for that given phase. If the actual number of

non-failed modules was Ni, where D - Ni s N, at the beginning of phase i, then, of

course, the module class was run with Ni instead of Ni units (a unit will be used as a

synonym for a module in this analysis). When the single phase analysis is completed

it will be appropriate to examine the more difficult question of phase composition in

the presence of undetectable and maskable type faults.

The modeling effort is accomplished by using a state space approach and employ-

ing the method of birth-death processes. No simpler approach appears feasible and,

in fact, an elementary argument developed by Bouricius, etal, [2], for the special

case X = . and (in our notation) Pm = Pd, i. e. the probability of fault detection =

probability of fault masking,turns out to be in error for the case of multiple fault

tolerance (i.e. for f _ 1 in their notation for f R S , which represents the module class

reliability of a simplex operated system).

The major conclusion that emerges from the present analysis is that the conserv-

ative statements of Bouricius, etal. appearing in [2], [3], [4] may be significantly

improved upon in the ARMIMS context since in their development of coverage, f, the

number of faults per module,was always assumed to be equal to zero. The present

6-3

treatment which performs a deeper analysis of the coverage mechanism allows f = 1

and thus, for the same parameter values which Bouricius uses, one should expect a

measurable improvement in reliability. The present method allows for quantitative

comparison of the Bouricius model v. s. the one presented here.

As an example, consider a multiprocessor system consisting of N active units

with no spares and assume that the failure rate due to maskable type faults is X m so

that the probability that a given fault is maskable is given by Pm = Xm/X. Then, in

the Bouricius analysis, since no faults are allowable, one would obtain for reliability

of this system for the time T:

-NXTRel = e

However, through the introduction of a double error detecting, single error correcting
Hamming code we would obtain for the system reliability:

N -NXTRel2 = (1 + Xm T) e

For small values of T the two results would be approximately equal with Rel1 < Rel 2,
always. For moderate values of T it is clear, though, that significant reliability

improvement can be achieved for Rel 2 relative to Rell, i.e.

RelelRl = (1 +AmT) N > 1 +N kmT

As spares are introduced the situation becomes more complex and, as will be pre-

sented in the development, it is essential to relate the notion of coverage to the actual

design or architectural implementation of the fault tolerant mechanisms employed by
the computer system.

In Section II, below, a review of pertinent work in the coverage area will be

presented and in Section III the underlying assumptions and mathematical development

of the present coverage model will be given. Actual numerical evaluations of the
present model are planned once the system of birth-death differential equations
describing reliability performance have been programmed.

6-4

IL Review of Previous Studies in Coverage Analysis

A. The Case of Perfect Coverage, c = 1

Kletsky, [9], in 1962,was an early contributor to the problem of system re-

liability evaluation in the presence of differing power-off and power-on hazard rates

, X, respectively. He treated the case of an active-passive standby system in

which N modules are always active and which possesses S standby spares. This

system of M = N + S identical modules will be considered to have failed if the number

of available good units falls below N. Introducing, for convenience, the notation

(due to Bouricius, et. al., [2]) R (, p.;T) = Prob (System is good through the time

interval 10, T] when the number of tolerable faults/module is equal to f, the coverage

is equal to c and the hazard rates are K, p.), Kletsky obtained, using Laplace trans-

form methods:

S k
1R (k, p; T) = e \ k 1 - e) Eq. 1

k=O

Here K = K/ and is an important design parameter of fault tolerant, computer systems,

[11].

In [5], Mathur made a similar study for the reliability of a TMR system with

S spares to obtain, assuming perfect coverage:

R(3, S)(T) = RTMR/S = Rel(TMR system with S spares)

S2 __.3K + S - i 2RK 2 [S-1
= i= (K + S - i) S i (3K+S-i) . Eq. 2

S (-Rs)S-i

i) (K + S- i) (3K + S- i)
i=0

where

-XT -p.T
R = e and R = e

Later, in his thesis, [8]1, and reported separately with Avizienis, [71, he extended

this analysis to the case of NIR/S, in which one has N = 2n + 1 and a majority,

6-5

n + 1, of the basic N active units must be functional at all times. The main result

was that

R(N, S)(T) = R RS 1 + j + - -1) E S s
j=0 s i=0

i -1. +i-r 1 S-2 K 1 +

SKr + S1] Eq.3r= Kr+S S R j Rr+1 R +

In his thesis, Mathur also evaluated the MTBF (the Mean-Time-Before-Failure) of

NMR/S systems, treating both the cases = 0 and 4 > 0.

ForC = 0, S > 1, he found:

MTBF(N, S) = 1 + (- 1)N + NS () (-1)i-ji=1 j=1

1 N 1
jS-1(Nj) r=l S N - Eq. 4a

For~ = 0, S = 1:

MTBF(N, 1) = + 1 + (-)n 2n (-N (N Eq. 4b
i=1 j=1

Meanwhile, for 4 > 0, S = 1:

S-1 m m-i n

MTBF(N, S) = M- E= NK + S- i NK S

m=0 i=0 i=0

i (-1) S-1 m m-i1 S(Kr+ s -
Sr=OE)K(N-r) m NK+S -

r-0 m=O i=0

Eq. 4c

6-6

Finally, for the case p > 0, S = 1,

MTBF(N, 1)=+ NK1 + NK -Kr 1 Eq. 4d
i=0 r- 0

The method he used to derive these quantities was principally that of enumera-

tion of events combined with judicious integrations'. The difficulty in attempting to

employ this method in the present analysis is that it involves lengthy and complex

decision trees, which become intricate to manipulate in dealing with the phenomena

of fault detection and fault masking.

Along a somewhat different tack, Taylor [10] has treated a problem similar

to TMR/S but he allows for software diagnostics to be added to the system when only

two out of the original N + S modules are still in the non-failed state. Using a

multiple integral evaluation routine, he computes the resultant module class relia-

bility, which he calls R*MR/S, and in which failure is declared only when all the

units have failed. Letting T = XT, he found that R*MR/S is given by:

MR/S e3T N-3 n- (3 +i) (1- e-T l
n=1 i= (i + 1)=i

(N-(3+ n)] (eT - e(N-3)T) Eq. 5

n= n
Sn=0

N-3 e-(N-3-n)PnT (1 - ei) n N-3-n

H n! 1 i+ 1
n=l i=0

+ N-3)+ 1 2(e2T- e(N-3) T) 2(eT - e (N3)IT

n=0 2 N +2 n4N3 1 +

n=0 n=O0

N-3 (N-3-n)rL 1- e'T)n N-3-n N-3-n
+ 2e (1- e7 ()

n=1 i=0 i=0

6-7

Again, this approach does not lend itself readily to extension if one attempts to

add the parameters of coverage. Bricker, in [1], completely unified the analyses of

Kletsky, Mathur and Taylor by introducing the concept of hybrid degraded redundancy,

written as H(N, S, D), in which one operates a system of M = N + S units with N active

and S spares until the total number of units falls to D - 1, D - N, at which point

module class failure is declared. Kletsky's case is included by setting D = N, TMR/S

as treated by Mathur is taken into account by setting D = 2, N = 3, while NMR/S is

handled with N = 2n + 1, D = n + 1. Finally, Taylor's analysis corresponds to the

case N = 3, D = 1. The method, using a combination of convolution of random

variables and Laplace transform arguments)leads to the following simple expression

for module class reliability:

N+S-D+1N+S-D+1 N+S-D+1 -X;T Eq. 6
R(N, S, D)(T) = A. N+S-D+e -T Eq. 6

where

i NX + (S - (i - 1)) if 1 iS + I
j (N+S+1-i)X ifS+ i N +S

and

J kfj (k - Xj)

For computational purposes this result is considerably more efficient to use as well as

being more general than the results given by equations 2, 3 and 5.

It should also be noted that as an immediate consequence of this approach the

module class MTBF is revealed by inspection to be:

S N-1
MTBF H(N, S, D) system = 1 N- + for 1 > 0 Eq. 7a

k=XN + yem k=D

N-1N- 1 S+N for L = 0 Eq. 7b
k=-D

6-8

Setting D = n + 1, we obtain the MTBF of NMR/S systems in a simpler form

than that provided by Eqs 4a-4b. Setting D = 1, N = 3, we obtain the MTBF of

Taylor's (TMR/S)* systems.

However, despite the ease and straightforwardness of the analysis provided in

[1] the method is not readily generalizable in its approach, to treat the complexities

of imperfect fault-detection systems which will be examined in II. B, below.

B. The Case of Imperfect Coverage

The first major contribution to the problem of imperfect fault-tolerant com-

puter reliability, using error detection and correction type implementation is

generally attributed to J. P. Roth, et. al. in [2], [3], [4]. Roth defined the

"coverage" parameter c to be:

c = Probability (System recovers I a module failure has occurred)

For ARMMS purposes the system in question is the module class. The authors go

on to state:

"Exactly what constitutes recovery is a matter for the individual system

designer to settle; at this point it is just a system parameter. In some situations

recovery may only mean detection, location and automatic repair of the hardware

failure, while in others it may also include very complex restoration of an operating

data base. In a sense, c can be interpreted as a probability of surviving a failure

without irreparable damage. "

Mathur, in his thesis, P. 34-35, concurs with Roth, et. al., in their treatment of

the fault detection problem as exemplified by the introduction of the coverage factor.

He writes, in discussing a previous model by Flehinger, which treated the detailed

behavior of the switching mechanism in a standby-replacement system which she

investigated:

"The actual switching mechanisms utilized, the error detection codes, along

with code check circuitry, and the software requirements of program rollback are

very much implementation dependent. Any detailed modeling of these effects would

necessarily be constrained to a narrow range of implementation possibilities. Hence,

Bouricius, Roth, et. al., in [3], avoiding the multifarious parameters as exemplified

by the Flehinger model, conceived a single parameter, c, which takes into account

all the aspects of failure detection and recovery. Thus, the exact definition of how

6-9

in both the active and passive states. Since the occurrence of faults is modeled

in terms of hazard rates one has the following density functions for the occurrences

of maskable active, unmaskable active, maskable passive and unmaskable passive

faults for a given module, (where unmaskable connotes detectable as well, implicitly)

X e-mM ' , e--m, lme Ii t , L e-I~m t . Then the coverage relating to the mask-
m m m m

able active and unmaskable states would clearly be given by cma = P m = Xm and

C a = P- = &-m/A. However, the probability that a module class would recover,

given that a fault has occurred to a spare, must now be conditioned on the number of

faults of each kind that have occurred to each spare, and this depends on time as well.

For example, given only one spare left and the occurrence of a fault in that spare when

the module class is operating in simplex at time t of a mission of total duration T,

then the coverage relating to a maskable fault would be given by:

T-t
T-t d -(1 + xms) e(m eX m m-) es ds Eq. 8

= A function of T-t

This would be the case if the active unit has experienced no faults at the instant that

the spare had acquired the maskable fault. A similar expression would hold in the

case that the active module had already acquired one maskable fault.

Let us now turn to the basic Roth coverage model as described in [3] and [4],
ON

to evaluate cRS (k, ;T). This analysis involved the method of recursive integral

equations.

We let N (T) = cOR (, L;T), for convenience, since the parameters X, will

be held constant throughout. Then Roth, et. al., obtained the basic integral

equation:

T
S(T)= -R 1(T) + c J - cR 1N (t)1 et e- t dt Eq. 91a

with initial condition given by:

N -XT
R 0 (T) = e

This was solved to yield,

N CS i S-i
SRSN(T) = (ci (1 - c)S-iR(T) Eq. 9b

i= 0

6-10

the system failure is detected, how the switching of spares is to be implemented

and what constitutes recovery has to be answered by the system designers of the

particular system under scrutiny. For the purposes of reliability modeling these

variants are lumped into one variable, the coverage factor c".

The point of view of the present study (and also that of some recent work of

Rennels & Avizienis, [13], [14]) is that both Roth, et. al. and Mathur have pre-

sented an oversimplified view of the coverage concept and that lumping the factors

together into a c factor is misleading. In fact, it is felt by the present author that

a model, following more closely along the lines of the Flehinger model, referred to

above, which attempts to delineate the important components of fault detection and

correction, is the proper one to emulate to the extent that it is mathematically

possible. In the ARMMS reliability model, the factors of fault detection and mask-

ing are explicitly stated and it is not readily discernible how a single factor c could

incorporate these basic features inherent in the coverage mechanism. Thus, the

present analysis attempts to embody coverage in terms of a vector of components

(= (Xe, m' d' "m) where (Xd, m) and (d' 4m) are the components of the hazard

rates X and ., respectively, relating to detectable and maskable type faults in the

active and passive states, respectively.

Although failures which occurred in the passive mode would be neither detect-

able nor maskable at the moment that they occurred, at the instant of switchover

it is assumed in our model that they would be detected and masked (in the rmulti-

processor case, e.g.) with respective probabilities given by Pd = *d/ anct

Pt =),/, due to the availability of software diagnostic routines that would test

these modules in a duplex mode prior to using them in a multiprocessor mode.

Moreover, this vector will actually change when the module class reverts to the

Duplex or TMR modes. This complexity of operation in three or more distinct

modes as well as the refinements required to distinguish the active from the passive

states, and, in addition, the distinction to be made between fault detection and fault

masking precludes the possibility of adapting the Roth coverage concept to ARMMS

reliability requirements.

To examine more closely the distinction to be made between our use of cover-

age and that of Roth, et. al., note first that for Roth c is a constant independent of

whether a fault in a module occurred in the active or passive state. In the coverage

model for ARMMS one distin.guishes between maskable v. s. unmaskable coverage

6-11

ON
where Ri(T) is given by 1 Rs(X,~L;T) from Eq. 1.

However, this formulation is incorrect since a fault in the system consisting of

S - 1 spares and N working units due to an error in detection may not allow for the

use of the last spare, a fact ignored in the inclusion of the term d/dt(1 - cRN(t))
in Eq. 9'a, above.

This error negates all of the coverage computations in [3] and [4]. However,

the authors rectified their error in [2], which was published two years later, and

here they gave the correct formulation of cRS(T) as follows:

0 N N 0N
cRs(T) = R N (T) c RS-1(T) + cS1 - 1RNI(t) e e-N(Tt)dt Eq. 9a

N -NXT
with initial condition R (T) = ec o

The solution of Eq. 9a is easily derived by the following algebraic argument:

N N S d N t -N(T-t)
ORS= cRS-1 +C t(1 - 1R S-1) e e-N(T-t)dt Eq. 9b

But setting c = 1 gives rise to the case given by Eq. 1, i.e.,

1RN N 1 + (1 RN e-N(T-t)dt Eq. 9c
1 R = Rsi dt- 1 Rs_)

Thus

f 1 S- 1 S 1 S-1

N N
and substituting 1RS 1RS-1 for the integral appearing in (9b) yields,

N N S N N
cRS cRS-1 +c (1RS RS-1 Eq. 9ecS cS-1 S 1 S-

Thus, by recursion, we have

N N S-1 N N
cRS-1 cRS-2 + c (1 RS - 1 RS- 2) Eq. 9f

N N S-2 N N
c S- 2 cR S-3 (1 Rs - 1 Rs- 3) Eq. 9g

6-12

RN RN +c(1RN R N Eq. 9h
cR1 = Rc 0 C(1 R 1 1R 0)

Summing in equations 9b--9h yields:

S
N k N N

cR = (IRk 1Rk-l)
k=0

where

R = 0

Using Eq. 1 and observing that (KN) (-e) = ,N we finally

arrive at the conclusion:

cRN = e-NXT ck kk) - e-iT Eq. 10

k=0

A derivation of the MTBF for the Roth-Bouricius coverage model may also be ob-

tained algebraically from the integral equation formulation. In fact, from Eq. 9e,

above, we have: I

N N N dj CO

/ cR (t) dt = c RNs(t) dt - S-1) + fcRN-1(t) dt Eq. 10a

Letting cEN = MTBF of the module class system when the coverage is equal to c, we

find that

N N S N N N
cEN cRs(t) dt = c (1S 1E N 1Es cE + Eq. 10b

and, in general, for 1 _ ks S,

EN N ck - IEN 1EN Eq. 10c
cE k c k-I 1E k 1-E

Since, from Eq. 7a, setting D = N, the MTBF of a parallel N-active, k-spare

module class system with perfect coverage is given by:

k
1 k + + it follows that,1 k kN + rp'r=0

N N 1
E _ E Eq. 10d

1 k 1 k-1 N + kI '

6-13

Then, summing in Eq. 10c for k = 1, 2, . .. S yields,

S k S k
EN _ k+ 1E C Eq. 10ec XN + k~l EO N + 4j.-_ k=0

In summary, in regard to the Roth-Bouricius reliability model, no distinction

is made between fault detection and fault masking and every fault is assumed to

cause the module which sustains that fault to be removed from the system. For

ARMMS these assumptions aren't tenable and thus the Roth-Bouricius model cannot

be employed for this system.

f 1In [2], Bouricius also treated the special case X = ± to obtain (k, XT), for

arbitrary f. His equations were obtained by case enumeration:

f RS (X,k;T) = R [cf+l(l f- R) Eq. 11
i=0

where

R = R (T) = e- XT (k Eq. 11a
k=O

and
f k

fR (T) = e-XT () Eq. 11b1 0 k=O k!

Although this would be a useful result and could serve as a springboard for

studying the evaluation of simplex reliability for ARMMS memory modules (by con-

sidering the special case f = 1, X = p and Pm= Pd) it turns out that the argument

required to justify Eqs. 11-11b is in error. The error stems from the fact that

accumulated failures for an active unit are detected sequentially in time, whereas,

when the system is ready to switch in a spare module, this spare may already have

acquired a set of faults which wouldn't have been detected while the module was in

the dormant state. In particular, the term c f+(1 - fR) is supposed to represent

the probability that a unit will have acquired at least f + 1 faults in time [0, T], and

that at least f + 1 of these faults were detectable, so that the unit would be discarded

and the module class would not be declared to have failed. This would indeed be the

case for the first unit to be used actively in the system, since faults occur sequen-

tially in time in regard to this unit. However, for the 2nd, 3rd, ... etc. modules

which were initially in the dormant (spare) mode, this no longer holds. Thus, for

6-14

a spare which as acquired f + k faults, with k z 1, by the time one is ready to imple-

ment its use in the system, the term cf+1 no longer represents the probability that

some subset of f + 1 of these f + k faults was detectable. To determine the appro-

priate value of R (k, X;T) it would be necessary to examine the time interval [0, T],

locally, and distinguish between the number of faults which a spare module has sus-

tained prior to its on-line switch-over into the system.

To do this it would be necessary to define coverage, c, in a more general way,

e.g., in terms of the number of faults, r, which a module has sustained, where r

need no longer be equal to one:

c r = Prob I System recovers /r faults have occurredt

It would appear from these remarks and some observations due to Rennels &

Avizienis ([13], [14]) that it is essential to distinguish coverage in cases of multiple

faults and in regard to faults occurring in the dormant v. s. the active mode. Thus

the miscalculations inherent in Eqs. 11-11b would appear to point up the requirement

for a more critical general definition of coverage. As Roth-Bouricius and Mathur

have themselves clearly indicated, coverage is design and implementation dependent

and the definition must relate to specific design features such as fault masking and

fault detection; although they conceded the first point they thought the second point

could be neglected.

It should be noted, however, that Eqs. 11-l1b do hold in the special case

f = 0; in fact, setting f = 0, X = . and N = 1 in Eq. 10 above, yields Eq. 11. This is

due to the fact that the definition of coverage, c, is really quite different in the

interpretation for f = 0 versus that used for f > 0.

When

f = 0, c = Prob (System recovers/system failure)

= Prob (System recovers/module failure)

since a dormant module failure requires no system recovery at all until one is

ready to switch in the dormant module.

When

f= 0,

then,

c = Prob (System recovery/At least one fault has occurred in some module)

6-15

Now let us uncritically accept the assumption that c is independent of the

actual number of faults that have occurred in a module, so that one has the same

chance of detecting the fact that a module has failed whether the failure is due to

1 fault or to 10 faults. The Hamming error-detecting codes would make this particu-

lar assumption invalid but we shall assume that it would be possible to invent some

design of an error detection mechanism that would validate this claim (i. e., the

interpretation of c may be unrealistic in terms of engineering design but it represents

no mathematical impossibility). Then, in examining the derivation of Eqs. 11-11b,

no difficulty ensues, so that Eq. 10 and Eq. 11 are equivalent when f = 0.
f+1

Let us now turn to the case f > 0. In order to obtain the factor cf+, in the

case of dormant fault occurrences, one must define c as follows:

c = Prob (Module fault can be detected/module fault has occurred)

otherwise, using the previous definition one would simply have the term c(1 - fR)i

instead of cf+1 (1 - fR)i in Eq. 11. But with this interpretation the temporal sequence

of faults must be considered before Eqs. 11-lb can be rectified. Clearly the

ubiquitous constant c must be carefully examined depending on its context of

applic ation.

Another attempt at developing an analytic approach to the coverage problem

was performed by Wyle and Burnett in [12]. The underlying system is of the Kletsky-

type i. e., an N-active, S-spare module class system under the following additional

assumptions:

a) X =p

b) No off line spares, or equivalently, any undetected failure in a power-off

or power-on state causes a module class failure

c) No fault masking, i. e., f = 0.

The authors derived the reliability:

N+SN+SIN + S k N+S-k
R(T) = 1- k f (1 - Pf)

S N+Sk (1 - Pf) N+S(1 -) Eq. 12

k=l1

6-16

where

-AT
Pf =1 -e

and

c is coverage in the Roth-Bouricius sense.

This model has serious shortcomings in assumptions b) and c) above.

A model with considerably greater depth was provided by Rennels & Avizienis

in [131. They describe a model for coverage in standby redundant systems, which

in our hybrid notation are describable as H(N, S, N) type systems, involving two

essential parameters Aa and As where:
C C

1) A a represents the conditional probability that a properly functioning monitor
c

unit can effect recovery, given that a fault occurs in one of the N active

modules.

2) As represents the conditional probability that a properly functioning
c

monitor unit can effect recovery, given that one or more faults have

occurred in a spare unit and show up when it is activated.

(The monitor unit is analogous to BOSS in the ARMMS system.)

This refinement of the single parameter coverage concept is further developed

by the authors in the context of f = 0, i. e., no failures or faults are to be tolerated

per module. Let c represent the vector (Aa, Ac)' then they obtain the recursive

formulation

cR N(T) -NXT-SLT + (AakN + As S1T e-(NX+Si)x R- N (T-x)dx
- T c S)J0 C -S-1

S o e-(NX+SL)xR N
+ (i- As[) e- R (T-x)dx Eq. 13a

i=10

with initial condition,

N -NXT
-R (T) = e
c6-17

6-17

These equations are solved recursively via the schema:

N -NXT TR N (T) = e -NT AS, ie-T Eq. 13b
i=0

where
S-1

(AaNK + SAS) A + (1 - As) A 1c c S-1, i c , i1
A for S >iS, i S-i forS>i

Eq. 13c

S-1

AS, S= 1 - i= AS, i ; A0,0 =1; A, j= 0for j > i

This brief summary of the coverage reliability problem has indicated that very

few significant studies have been made, and when confronted with a specific fault

tolerant design such as ARMMS, it is not surprising that no tailor made analyses

already exist for one's use. In the next section we shall describe a mathematical

model which was developed explicitly for the ARMMS coverage problem. The model

is algorithmic (as opposed to being of the Monte Carlo or simulation variety) but

there are no general closed form answers to the equations developed, and numerical

programming procedures are required in order to evaluate the multiprocessor,
Duplex and TMR reliability performances.

III. Mathematical Formulation of Simplex, Multiprocessor, Duplex and TMR

Reliability Including Fault Detection and Fault Masking

III. A. Model Assumptions for Simplex and Multiprocessor Modes

A-1 - Only one failure can be masked per module. Additional maskable faults will

be detectable but the module will be removed from on-line and not used in this mode

again.

A-2 - Any number of undetectable faults per module will remain undetectable and any

number of detectable faults may occur per module and still remain detectable as a

group. (This assumption is not strictly true for ARMMS but for the range of hazard

rates anticipated in the program, the exceptions may be considered negligible for
reliability modeling purposes).

A-3 - Faults that cannot be detected in simplex for a module that developed faults

while dormant can be detected in duplex with probability Pd = 1 and in the case of

6-18

processors one may assume that a processor can be tested in duplex prior to placing

it on line in simplex. (At present the model has been structured without this assump-

tion since it is more difficult to add diagnostic subroutines. Also the analysis is more

complex for this case.)

A-4 - In the case of memory modules it is to be assumed that X = p.

A-5 - Serial Gate Model Assumption:

Let

g = # of gates/module

gu = # of gates, the failure of any one of which would cause an undetectable

module failure

gd = # of gates, the failure of any one of which would cause a detectable

module failure

gm = # of gates, the failure of any one of which would cause a maskable

module failure

gm-= # of gates, the failure of any one of which would cause an unmaskable

but detectable module failure

Then,

g = gu + gd = gu +gm + gia Eq. 14a

= Xu +kd =k + + k Eq. 14b

Eq. 14b merely restates Eq. 14a in terms of the failure rates associated with the

detectable, maskable, etc. portions of the module hardware.

We suppose that all gates are in series. Furthermore, we consider the ratio

of the hazard, rate for second failure to the hazard rate for first failure for the

three basic failure types U, M and M in Table 1, following.

For large values of g u' gmn' g, it follows that Table 1 has approximately

the entries that it would have if the second failures were independent of the first.

Moreover, if X is sufficiently small, the chance of an appreciable number of

failures is small so that one has the basic Serial Module Gate Assumption, viz.,

6-19

2
U M M

U .1- 1/g m/ ii

M / Xm/ - 1/g

M / m/ Afi/k. - 1/g

Table 1 - Ratio of Hazard Rate to Second Failure to Hazard
Rate to First Failure for the Failure Types U, M, M

repeated failures are independent and are generated as negative exponential random

variables with parameters X, Xd, u' , iNm' for the respective types of gate hardware.

Clearly,

d mPd ' m m m

when the module is operated in the active mode.

II.B. Glossary of Symbols

1 1
cR (k, L; T) = Prob (Successful simplex operation in [0, T] with S available spares,

X, L the hazard rates in the active and lassive modes, while the

coverage vector is c)

1RN(k, ., T) = Prob (Successful multiprocessor operation in [0, T] with S availablec S
spares, X, IL the hazard rates in the active and passive modes, while

the coverage vector is c)

" = The coverage vector, given by (m , k i' m' Li)

X = Active hazard rate

-L = Passive hazard rate

Xm = Active hazard rate for maskable error hardware

m = Passive hazard rate for maskable error hardware

A- = Active hazard rate for unmaskable error hardware

6-20

ffi = Passive hazard rate for unmaskable error hardware

M = # of available modules in the module class at time 0

f = # of all allowable maskable faults per module (for the current

analysis f = 1)

Xd
P = Prob (Detection occurs module failure in the active mode) -

P = Prob (Detection and fault masking occurs module failure occurs
Xm

in the active mode) -

III. C. The Birth-Death Process Analysis for Simplex Reliability

II. C.1. General Discussion

The major complexity in dealing with the fault-detection and correction problem

in the present model lies in the fact that when an unpowered spare is powered on the

unit changes its hazard rate from . to k and this presents combinatorial as well as

analytic difficulties. In addition, one must keep track of the order of events in which

transitions of this type are occurring since different probabilities are to be attached

to differing transition types. A basic method for taking account of the transitions

from the passive to the active mode is that of the Birth and Death Process, since due

to the negative exponential character of the various modules in the active and passive

states, one has an underlying Markov process in effect.

We assume that the units are to be run sequentially and that starting with unit 1 in

the active state, we operate it until it has accumulated one non-maskable fault or two

maskable faults, whichever event occurs first. At that point in time we switch over

to the next passive unit in sequence which has the property that it has either acquired

no unmaskable faults or at most one maskable fault, this having been acquired while

in the passive state, and power this unit on. This unit is then operated in a manner

identical to that in which the first unit was operated and oneproceeds in sequence

through the entire bank of S + 1 = M modules. Module class failure occurs if before

time T some module was actively run with an undefected fault or there are no modules

left among the M with the property that at most one maskable fault has been acquired

by that module.

6-21

We shall not invoke Assumption A-3 here, but rather will take the point of view

that if an unpowered unit is to be placed on line, then an undetected failure will have

occurred with hazard rate i - Rd during the period that the unit was in the dormant

state. The corresponding passive maskable and unmaskable hazard rates are given

by m and i , respectively, where Ed = m + m. Again we think in terms of the gate

model assumption, A-5, and that faults of the three different types, undetectable,

maskable and unmaskable may be conceived of in terms of three different hardware

classes. Also, A-5 implied that successive faults were independently distributed

(approximately) both with respect to a given hardware type and with respect to dif-

ferent hardware types, (as in Table 1, p. 18), except that the X-symbols should be

replaced with their p-counterparts.

In Figure 1, below, the general inclusion relations that exist among the various

fault types are displayed

F = UpD

D = MuM"

M C:

D

U

Figure 1. Fault Type Inclusion Relationships

6-22

U = Class of all undetectable faults

M = Class of all maskable faults

MV = Class of all unmaskable faults

F = Class of all faults

D = Class of all detectable faults

A simple decision tree illustrates the typical event sequences associated with

a fault; this is given in Figure 2, below, and applies to active faults only.

F

. i (Go on to next module in

, 1sequence and power it on.

refers to module failure.

I refers to module class
failure.

Figure 2. A Flow Diagram Depicting a Failure Sequence
for an Active Module

6-23

In Figure 2, above, the subscripts 1 and 2 refer to first and second fault occurrences,

respectively. For an inactive module, - faults cannot be detected nor masked until

the unit is powered on, at which point the fault will be detected with probability

instantaneously if a fault occurred and will be masked, instantaneously, with pro-

bability - - f - if a fault occurred. The instantaneous time assumption is reasonable

within the framework of presently structured ARMMS hardware design.

II. C. 2. The State Space and Differential Equations of the Simrlex Reliability Analysis

At time t the system (module class) will be said to be in state (i, j) if the module

class hasn't failed in the interval [0, t] and if module i is active at time t and has

experienced j maskable faults and no unmaskable faults. It is implicit that if the

module class hasn't.failed in [0, t] that the module numbered (indexed) by i has

experienced no undetectable faults during [0, t].

Here,

1-i < M, j = 0, 1

Let

P, (t) = Prob (System is in state (i, 0) at time t)

P 1 (t) = Prob (System is in state (i, 1) at time t)

Then

M

RS (X, p; T) = i, O (t) + Pi, 1 (t Eq. 15

i=l

Furthermore, for i . 2 we have the transition equations:

Si-1 - i-j-1

Pi, 0 (t +Ot) = P 0 (t) 1- (1+ mt) e- dme - t " Eq. 15a

j=1

i-1 d i-j-1 -tt

+ P, (t) (1 + t) e d e At

j=1

+ Pi, 0 (t) [1 -At] + o(At)

6-24

Pi, (t t) = j, 0 (t) 1i- (1 + mt)e j rmt e At Eq. 15b

j=1

i-1 -. di-j-1
+ Pj, 0 (t) L - (1 + Imt)e- ddmte- At

j=1

+ Pi, 0(t) (X At) + Pi, 1(t) [1 -XAt] + o(At)

For i = 1,

P,0(t+ At) = P1, 0 (t) [1 - kAtJ + o(At) Eq. 15c

P,1 (t + At) = Pl,(t) [m At] + Pl, (t) 1 - Xt] +o(At)

Equation 15a is derived as follows:

In order to be in state (i, 0) at time t + At it is necessary that either,

a) The state at time t was (i, 0), the probability of this event being Pi, (t)

and in the duration of time At the Poisson process of faults related to

module i had no arrivals, i. e., 1 - XAt + o(At) = probability that no

failure occurred, or

b) At t the system was in state (j, 0), for j<i, module j experienced a

non-maskable fault, with probability given by XAt + o(At), each of the

i-j-1 modules of index I, where i<l<j, had either at least two maskable

faults or at least one non-maskable faults in the powered-off state, this

probability being given by [1 - (1 + mt)emnt e- it] and module i had no

faults in the internal (0,t), this occurring with probability = e- 't, or

c) At time t the system was in state (j, 1) for j<i, with probability = Pj, 1 (t)

and furthermore, each of the intervening j-i-1 modules experienced at

least two maskable or one non-maskable fault, and module j experienced

a detectable fault with probability XdAt + o(At), while, finally, module i

had no faults in [, t] nor in [t, t + At].

A similar derivation holds for Equation 15b with the factor e I t (1mt) representing

the probability that module i acquired exactly one maskable fault in the time interval

[ot].

6-25

In Equations 15a, b, c, and d the term o(At) denotes an error term which

satisfies o(At) -0 as At -0.
At

The Equations 15a, b depict a system satisfying the assumptions of Al-A5,

except that duplex testing for faults isn't performed for modules moving from the

power-off to the power-on state.

Subtracting Pi,(t) and Pi, (t) from the right-hand sides of Equations 15a, b,

respectively, and then dividing both sides by At and letting At-0, one obtains the

following system of differential difference equations:

For i 2,
i-1 i-j-1

Pi, (t) =Pi, 0(t) + P, 0 (t) 1 - (1 + 'mt)edI Xe - t Eq. 16a

j=1

i-1 i-j-1

+ Pj, l(t) [- (1 + mt)e Xde

j=1

Pi, l(t) = P i , 0 (t) - Pi. l(t)+ 1, tt) [1 1+

i-1 i-j-1

+3 P.j,(t) 1 - (1 + Lt)e d] Xtmte

j=1

i-1 i-j-1

+ Pj, 1 i(t)1 - (1 + mt)e u tt d

j=1

For i = 1

P1, (t) = - P1, (t) Eq. 15c

Pl,l(t)=- XP,(t) + Xm P , 0 (t) Eq. 15d

The initial conditions are given by

P1, 0 (0) =1 , P 1 ,1(0) =0 Eq. 15e

Pi, 0 (0) = 0 , Pi 1 (0) = 0 for i 2 Eq. 15f

6-26

For relatively small i, it is possible to solve the system of differential equations

15a, b, c, d subject to the initial conditions 16a, b directly. For larger i, a computer

algorithm is necessary. It should be noted that Pi, k(t) depends only upon PI (t) for

jsi
k, k = o, 1, all t.lk ,

For i = 1 we find:

Pl, 0 (t) = e - Eq. 17a

P 1 ,1 (t) = -XPl, (t) + Xme

P, l(t) = Xmt e - t Eq. 17b

Equations 17a, b are easily shown to be the solutions of Equations 15c, d respectively.

These values are then inserted into Equations 15a, b with i = 2 to obtain P2, 0 (t) '

P 2 , 1 (t) and then the process is repeated until all the solutions Pi, k(t) are obtained

for l_ iM+1, k=1,2 tf[0,T].

In general, once Pi, k(t) are known for 1 - i s n-1, k = 1, 2 then it is an easy

matter to solve for Pn, k(t). Let us write out the equations for i = 2:

P 2 0 (t) = -P 2 0(t) + P(t) + P + P (t)de

P2, 1 (t) = kmP2,(t) -kP 2 , 1(t) + xk mt e P l,0 (t) + Xdmt eIP 1 , 1 (t)

Let

x = P2,(t) , y = P2, 1 (t)

- e = -kx + e-(XI)t xIe (X -()t mdt

= mxxy+ 1,O(t)hmt et +t P1 I(t) Xdimt e - t

t(X+I)t e X+)t
4 = m -ky+ mt e-(+ t + e-(+ t m dt2

Thus,

* = -x + e - +)t (+ Xmdt) Eq. 18a

= km - y + e - ()t (t kXfLm + kmImkdt2) Eq, 18b

6-27

subject to the initial conditions x(O) = y(O) = 0

A numerical procedure which recursively computes the desired solutions x(t) and y(t)

is easily developed.

D. 3. Form of the General Solution

The linear differential equation given by

+ yP(x) = Q(x) Eq. 19a

in which P(x) and Q(x) are functions of x, only, has the solution:

- P(t)dt P(s)ds

y(x) = e Q(t) e 0 dt+ C Eq. 19b

Assuming a recursive procedure is used to evaluate P i,0(t), P, 1(t) in Equations 15a,
1,0 1, 1(t

b, c, d let us write:

i-1
i-i-1

Ai (x) = e 1 - (1 + mx)e -dx] -1 (Pj, (x) + XdP.l(x)) Eq. 19c

j=1

i-1 i-j-1

B (x) = e-~x 1- (1 + mx)edl (XkLmtPj, 0(x) Eq. 19d

j=1

+ dmt Pj, 1 (x))

Then for i - 2, one obtains from Equation 19b

t

P. (t) = ext n eT A(Tr) dT Eq. 19e

t

P', 1 (t) = ext 0 eXT(Bi(T) + Xm Pi, (T)) dT

t j

= e t eXT(Bi() + me-kT e s Ai (s)ds) dr

0 6-28
6-28

Hence,

Pi, 1 (t) = et e B i + m ek s Ai(s) ds dT Eq. 19f

Note that Equations 19e, 19f satisfy the initial conditions that

Pi. (0) = Pi, 1 (0) = 0 for i -2.

Returning to Equations 18a, 18b we find using Equations 19e, f:

t

x(t) = Pi, 0 (t) = e eXT e-()T +-((X+)T) dT

-kt m(-t) 1 - (l + t) e- t= e (1-e- ~t) + X md)
\ md 2

(- m m d - t +- (+ -t k m k d (1 +p t)

y(t) = e - t eX - +)T(TXM m + km mXd) + mX(t) dT

t
6-22

+ m k mkd _ kmkd

S+ e +- (1 + RT) dT
M 112 j;7 + 4L2

t
-Xt +-xt - IR 2 dT

= (X + kmkd te + e e (a+ Pr + YT2) dr
mR 0

where

km= + x = m

6-29

and

y = km .mkd
Then, ,.t

ext e- (a+ T+YT) dT =

= et (1 - - 1- (1 ++ it) elt)4 2

+ 1 - (1 + 4t)e - 4t

=eXt ++ + - e + t) + (+ (1 + + t)
2 3 23+

y(t) = e-xt + + Y +m x km dX Ad

- e- (+ (1 t) +Y + (1 + t)

where

F L 2

PmXd= XfLm - Eqs. 19h

Y= Xkmmk
dd

Thus, for M = 2, S = 1, we have the solution:

11.SR (X, ; T) P (T) +P 1(T) + P 2 (T) + (T)

6-30

Hence,

1 -XT -XT i- kmkd - (X+ p) T . 2iR (a, X;T) e T(I + X T) + e + -e Eq. 20
F m T) 2)E

XmXd (1 + T _ e__ + + + + XmXd
2 2 3 m 2

- (1 + (1+ T) +Y +- (1 + d

where ~a,, Y are given by Equations 19h.

In programming the recursive solutions of Equations 15a, b, it will be important

to consider the error buildup from step to step, since roundoff errors may be significant

for large M. For the processors, M is moderate, (about 7), and the problem of exces-

sive error accumulation is probably not too significant, especially since the functions

Ai(T) and Bi(T), appearing in Equations 19e, f are positive over [0,oo].

IU. E. The Multiprocessor Reliability Problem

1N
The multiprocessor analysis treats the case of general N in- R (k, ;T), wherec S

for N= 1, one has the special case of simplex reliability. All the assumptions A-1--A-5

pertaining to simplex reliability now hold for the multiprocessor analysis.

We define the corresponding birth-death process as follows: At time t the system

will be said to be in state (i, k) if the module class hasn't failed in the time interval

[0, t] and if i active modules have experienced no faults of any kind while N-i active

modules have experienced exactly 1 maskable fault each, and if k is the index of the

highest numbered module in the active state. As in the simplex case, it is implicit that

if the module class hasn't failed in [0, t] then none of the N-i active modules mentioned

above has acquired any undetectable faults in [0, t].

Let

Pi, k(t) = Prob (System is in state (i, k) at time t)

6-31

For 0 < i < N, the following transition equations hold:

P. (t+At) = , k(t)(1 - N At) + Pi+, k(t)(i+1) mat +o(At) Eq. 21a
i, ik i+1,k m

k-1

+ i, (t) [- Lt)e (i+l)kmte-LtAt

R=N

k-I k-4-I

+ Pi 1 ,1 (t) 1-(+mt)e d t] (N-i+l)kdet at
8=N

k-1 k4-1

+ P pi,x(t) 1- (1+ mt)e [iX+(N-i)kd Lmt e At

2=N

For i = 0, one has:

P0, k(t + t) = P0, k(t) [1-NAt] + P1, k(t) I At + o (At) Eq. 21b

k-1 k-f-I

+ P, (t) [1-(l+mt)e d] e at
j=N

k-1 k--1

+ I Po,(t) [1-(14+lmt)e N

J=N

For i = N, one has:

PN, k(t+At) = PN, k (t) [1-NAt] + o(At) Eq. 21c

l=N

k-1 k-1-1

+ PN,.(t) [1-'+Nm t)e dt e-tat

J=N

6-32

The boundary conditions are given by:

PN, N(O) = 1

Pi, k (0) = 0 for (i, k) / (N, N), i. e. if any one of i, k is distinct from N.

The differential-difference equations obtained from these transition equations then

become:

For 0 <i<N,

Pi, k (t) = -NXPi, k (t) + Pi+1, k(t) (i+1)Xm Eq. 22a

k-1 d k--1

Pi+,(t) 1-(1+pm. t)e dt (i+1)Xe - t
1=N

k-itr k -

+I Pi-1,(t) -(1+mt)e d (Ni+1)Xde t

k-i k--1

+ Pi,s (t) 1-(1+ mt)e d (ik+(N-i)xd mt) e- t

)=N

For i = 0,

P O) = NXP (t) + km 1, k(t) + o(At) Eq. 22b

k-1 k--1

+ P1,J (t)[1-(+p t)e1 X 4m t e
t=N

k-1 kt-1

+ Po,(t) 1-(1+mt)e- d Nd mt e-t

J=N

For i = N, k-

PN, kk() -NPN k(t) + PN- (t) 1-(l+m t)e k-de.t Eq. 22c

1=N

k-1 tk-i-1

+ k(t) 1-(1+- t)ed NkNX-et
SN, m -33

I=N 6-33

Equation 21a is derived as follows:

In order to be at state (i, k) at time t+At any one of the following mutually

exclusive conditions must be satisfied:

a) Either the system was in state (i, k) at time t and in the time increment At

(i. e., the time from t to t +At) no faults of any kind occurred to the N active

units at time t. This gives rise to the coefficient (1 - NXAt) of Pi, k(t)

where effects only up to the first order in At need be considered,

or

b) The system was in state (i+l, k) at time t and at least one of the i+1 active

modules, which had incurred no faults of any kind, experienced a maskable

fault during the time increment At, this occurring with hazard rate (i+l)Xm;

this accounts for the term Pi+1 , k(t) 1(i+1)XmAtI

or

c) For some., N<i< k, the system was in state (i+l,)) at time t, then one

of the (i+l) active modules with no faults experienced a nonmaskable fault

during At. Then, in sequencing through the next k-l potential spare

replacements, each such spare had either acquired at least two maskabie

faults or at least one non-maskable fault during the period [0, t], thus

precluding its use in the system, while the k-th indexed spare had acquired

at least one maskable and no other faults of any kind during this time period,

[0., t]. Note that is is not necessary to require that any of the k-i-l spares

which were passed over as potential replacements for the removed (faulty)

active unit, experience no undetectable faults during [0, t], since independent

of whether such faults had or had not been acquired, the module would not

be used in a multiprocessor system by virtue of assumptions A-1 and A-2.

The spare sequencing probability is [1-(l4mt)e-dt]k-1-1 while the hazard

rate associated with the occurrence of at least one unmaskable fault (to

the i+l active modules which haven't had any faults is (i+1)X~. Finally,

the probability that the k-th spare has acquired exactly one maskable and

no other kind of fault in [0, t] is given by Lmte - t .

The fourth possibility is that:

d) For some 1, N 1J< k, the system is in state (i-l,2) at time t, and k-1-1

potential spares are correctly diagnosed as being non-suitable to multi-

processor operation with probability -(1+-(+mt)e- d k-1-1 as before]
6-34

while at least one of the N-i+1 active units, each having exactly one

maskable fault, experiences at least one detectable fault with hazard

rate (N-i+l)Xd , while, finally, with probability e - 4t, the k-th spare, which

is to join the i-1 active no-fault modules, has acquired no faults of any

kind during [0, t].

The fifth possibility is that:

e) For some ., N s < k, the system is in state (i,2.) at time t and either one

of the i active zero-fault modules acquires a non-maskable fault while the

k-th spare replacement has acquired none during [0, t] (this accounts for

the term iXie-t At) or, alternatively, at least one of the j one-maskable

fault active modules has acquired a detectable fault during At, with hazard

rate jXdAt and the replacement spare, of index k, has acquired exactly

one maskable fault during [0, t], this occurring with probability mte -lt.

The remaining possibilities that could occur would be for the system to move

from state (i+2, 1) at time t or from state (i+3, 1) at time t, etc., to state (i, k) at time

t+At; but these effects are all of second or higher order in At and drop out in passing

to the limit as At -0, when one formulates the corresponding differential-difference

equations for the system. These terms are all subsumed within the term o('t) in

Equation 21.

The derivations of Equations 21b and 21c are similar except that for the case

i=0, e.g., the terms under the first summation would vanish in Equation 21a, by

definition. Similarly, for Equation 21c the second summation terms involving

P1 , 1 (t) must vanish (in Equation 21a).

Once the (unique) solution of this system of (N+1)(S+1) differential equations

with prescribed boundary conditions is obtained, one may write:

N N+S

1R (k, ;T) = Pi, k(T) Eq. 23

i=0 k-N

Let us next treat the special case M=N (i. e., S=0).

6-35

For o< i < N,

Pi, N(t) = -NXPi, N(t) + (i+l)xmPi+l, N(t) Eq. 24a

PO, N(t) = -NPO, N N(t), Nt) Eq. 24b

PN, N(t) = -NXP N(t) Eq. 24c

Certainly, from Equation 24c we find, using the initial conditions,

P N(t) = e-Nt

By recursive solution, using Equation 19b, we find that

P N(t) = (N) e-ikte-(N-i)Xt(h t)N-i

= ()(Xmt)N e , 0o iN Eq. 25

We verify this by showing that Pi, N(t), as given by Equation 25, satisfies Equation 24a

(Equation 24b is a special case of Equation 24a).

In fact,

Pi, Nt)= e Nt[(Ni)Xm (Xmt)Ni-1 - t) N-iN

iN)) (mt)N e Nt +(i+1) X(N)N-i (mt)N- -le-NXt

-NXP.i (t) +(i+l) (t) N-(i)

= -NXPi, N(t) +(i+l)pm Pi+1, N(t)

thus verifying Equation 24a.

Finally, we have from Equation 23,

NN ;T) N) N-i -NT N -NXT
S(T) = T) e Eq. 26

i=0

The result is, of course, obvious by inspection, but is also verifies that the

Birth-Death Process approach gives the correct results, i.e., it validates the

internal consistency of this approach. It is clear, a priori, that IRN (,
c (X, ;T) is

independent of p. 6-366-36

In addition to solving the special case, M=N, above, the solution given points

the way as to how the general case should be solved, iteratively. In fact, for M>N

first solve for Pi, N(t) and it is clear that the solution will be exactly that obtained by

Equation 25. Now set k=N+l and solve Equations 22a, b, c for Pi, N(t). The terms

N
under the summation sign, viz., Z () are all known so that the theory indicated

I=N

by Equation 19b points up the solution for PN, N+1(t). One starts with Equation 22c

and solves for PN, N+(t) and then works backwards (i.e., in terms of the index i) to
N, N+1

solve for PN N1 (t), P (t), . etc. After the P. (t) have been solved,
N-1, N+1 N-2, N+1 , N+1

the procedure is repeated (again using Equation 19b) to find Pi, N+2(t) I N

N N N
IP N+3(t) . . . jP (t) , . . . and finally for P. N+S(t)

', N+3 " i, k i=0. i, N+S i=(

At every stage of the process, one has a linear differential equation, with

variable coefficients, of the first order, and the numerical analysis is easily set up

in recursive fashion. As in the simplex case the problem of roundoff error must be

carefully investigated as well as that of error buildup.

III. F. The Duplex and TMR Reliability Problems

The basic assumptions of simplex reliability mentioned in III. A, above, apply

equally well to both the Duplex and TMR modes of operation with the following dif-

ferences regarding the hazard rates relating to maskability and unmaskability as well

as detection. Since both in Duplex and TMR all faults are detectable, in the first case

via the use of error correcting codes and comparison of module outputs, and for TMR

via voting, the class of undetectable faults, illustrated in Figure 1, does not exist

in either Duplex or TMR.

Thus, the active hazard rate due to maskable faults remains A as in the

simplex or multiprocessor cases, while the active hazard rate due to unmaskable

faults is now given by A - Am = h + Au. Similarly, the hazard rate due to passive

maskable faults is now im while the hazard rate due to passive unmaskable faults is

-~m = tffi+t The detection hazard rates are then , and .i, for active and passive

faults respectively, since all faults are detectable in either Duplex or TMR.

6-37

With these minor modifications, the Duplex or TMR reliability analyses

become special cases of the multiprocessor reliability analysis by setting N=2 and

N=3 in the Equations 22a, b, c, respectively.

In these equations one must, in addition, replace each occurrence of the

quantities ' m , l' m' d by their respective counterparts m -m' . ' m'

Thus we rewrite the basic differential equations for Duplex and TMR reliability below.

III. F. 1. Duplex Reliability Differential Equations

For i = 1,

Pl, k(t) = -2P1, k(t) + P2, k(t) (2 Xm) Eq. 27a

k-1 k-1-1

+ I P2,1 (t) [1- (1+lm)et 2(-m)e - t

1=2

k- k-1-l1

+k P0 1 (t) [1 - (l+1m)e-t] -I 2ke-

1=2

k-1(--k 1

+ P 1 ,l(t) 1- (1+L-)ek (xXm+xmt)e- s t

I=2

For i = o,

'o0, k(t) =-2kP, k(t) + P1, k(t) Eq. 27b

+ P 1,(t) - (k-t)et (-rm

1=2

k-1

+ POI(t) [1 - (1+Lmt)e-'tl mj2XIntet

1=2

6-38

For i = 2,

k-I k--1i

2, k(t) = 2, k M , p,(t) 1 - (1+mt)e-t e- t Eq. 27c

1=2

+ P 2 ,(t) - mt)e-t 2(-km)e -

1=2

The initial conditions are P2, 2(0) = 1, Pi, k(0) = 0 for i or k # 2.

III. F. 2. TMR Reliability Differential Equations

For 0 < i < 3,

Pi, k(t) = -3XPi, k(t) + Pi+l, k(t)(i+l)m Eq. 28a

k-1 1 t k-i4
+ P1,(t) 1 - (1+mt(i+1()-km)e

1=3

k-1 k--1
+ Pi-l,(t) [1 - (1+mt)et (±-i)ke

1=3

k-1 k--

+ Pi,1 (t) [i - (l mt)e' (i-m) + (3-i)kmLt)et

1=3

For i = 0,

o, k(t)= -3 XP k(t)+mPl, k(t) + Eq. 28b

k-1 k- -1

+ P1,I(t) 1- ((-mt)e't (-km)PmteL

1=3

k-1 k-1-1
+ P , 1 (t) 1 - (I *mt)e -It] 3(kmte-t

=3

6-39

For i = 3,

k-1

P3, k(t)= -3P 3 , k(t) .+ P -(t) 1 - (14 lt)e-4t -Xet Eq. 28c
t3

k-1

+ P3,(t) 1 - (1 mt)e --t 3(X- m)e-4t

1=-3

6-40

Bibliography

1. J. L. Bricker, "A Unified Method for Analyzing Mission Phase Reliability for

Standby and Multiple Modular Redundant Computing Systems which Allows for

Degraded Performance, '" HAC-GSG, January 1, 1972; also appeared in IEEE

Trans. in Reliability, June 1973, p. 72-77.

2. W. G. Bouricius, W. C. Carter and P.R. Schneider, "Reliability Modeling

Techniques for Self-Repairing Computer Systems, ACM 1969 Conference,

p. 295-305.

3. J. P. Roth, etal, "Phase II of an Architectural Study for a Self-Repairing

Computer, " SAMSO TR-67-106, November 1967.

4. W.G. Bouricius, W. C. Carter, J. P. Roth, P.R. Schneider, "On-Line Reliability

Calculations to Achieve a Balanced Design of an Automatically Repaired Com-

puter:, NAECON, May 1967.

5. F. P. Mathur, "Reliability Modeling and Analysis of a Dynamic TMR System

Utilizing Standby Spares, " Proc. Seventh Annual Allerton Conference on Circuit

and System Theory, October 1969, p. 243-249.

6. F. P. Mathur, "On Reliability Modeling and Analysis of Ultrareliable Fault

Tolerant Digital Systems, "IEEE Transactions on Computers, November 1971,

p. 1376-1382.

7. F. P. Mathur and A. Avizienis, "Reliability Analysis and Architecture of a

Hybrid-Redundant Digital System: Generalized Triple Modular Redundancy with

Self-Repair", Proc. 1970 Spring Joint Computer Conference, AFIPS Conference

Proc., Montvale, N. J., AFIPS Press, May 1970, p. 375-383.

8. F. P. Mathur, "Reliability Modeling and Architecture of Ultra-Reliable Fault -

Tolerant Digital Computers, " U. C. L. A. Ph. d Thesis, 1970, Computer Science

Dept., Available through University Microfilms, A Xerox Company, Ann Arbor,

Mich., 1971.

9. E. J. Kletsky, "Upper Bounds on Mean Life of Self-Repairing Systems, " -

IEEE Trans. on Reliability and Quality Control, V. RQC-11, No. 3,. Oct. 1962,

p. 43-48.

6-41

10. D. S. Taylor, "A Reliability and Comparative Analysis of Two Standby System

Configurations, " IEE Trans. on Reliability, Vol. R-22, No. 1, April 1973,

p. 13-19.

11. D. S. Taylor, "Unpowered to Powered Failure Rate Ratio: A Key Reliability

Parameter", NASA-George C. Marshall Space Flight Center, Unpublished.

12. H. Wyle and G. J. Burnett, "Some Relationships between Failure Detection

Probability and Computer System Reliability, " AFIPS: Fall Joint Computer

Conference, Nov. 1967, p. 745-756.

13. D. A. Rennels and A. Avizienis, '"RMS: A Reliability Modeling System for

Self-Repairing Computers", 1973 International Symposium on Fault-Tolerant

Computing, FTC-3, June 20-22, 1973, Palo Alto, Calif., p. 131-135.

14. A. Avizienis and D.A. Rennels, "Fault-Tolerance Experiments with the JPL

Star Computer, " CompCon-72, Sixth Annual IEEE Computer Society Inter-

national Conference, Digest of Papers, San Francisco, Calif., Sept. 12-14,

1972, p. 329-332.

6-42

